LAURENTIAN.

General Features.

Practically all the Laurentian lies in a continuous area, east of the West branch and extending beyond the limits of the map sheet. A smaller body occurs just west of Pigeon lake. The foliation in the Laurentian is less distinct than in the Keewatin and much less perfect. Its component rocks are mainly granite and allied plutonic types which pass by easy gradations into well-defined gneisses. Two principal granites are distinguishable; one containing black mica as its chief coloured constituent, the other hornblende. Both exhibit local variations in composition and crystalline texture, but are always pale grey rocks of ordinary granitic appearance.

The hornblende granite is a medium grained, fresh looking rock of speckled appearance, owing to the black hornblende crystals which lie scattered through the main mass of light grey feldspar and quartz. It is of uniform aspect, local variations of colour and texture being insignificant. As revealed under the microscope by a single thin section, it is an ordinary hornblende granite verging towards a syenite. Common green hornblende of idiomorphic prismatic habit, and usually twinned parallel to 100, is the principal ferromagnesian mineral. It is quite fresh, hence a few flakes of chlorite in the section were taken to represent an original small content of biotite; an acid oligoclase and orthoclase are the most abundant constituents; quartz is subordinate. Apatite, zircon and iron ore, probably magnetite, are accessory.

Hornblende granite is the commonest Laurentian rock in the neighbourhood of L’Africain and Sedge lakes, where it is in contact with the Keewatin. It also occurs on the East branch just below Obushkong lake. The area west of Pigeon lake seems to be composed wholly of this rock, outliers of which extend to Brush lake, and the islands and east shore of Pigeon lake. Here, however, it is distinctly syenitic, quartz being subordinate or absent. A distinctly porphyritic structure is apparent on Pigeon lake; the feldspars being well crystallized and lying in a finer grained, holocrystalline ground mass.

Biotite granite and gneiss are most prevalent in the northern and eastern portions of the area. No microscopic examination of these rocks has been made by the writer, consequently, little can be said regarding their composition. They are of much the same texture as the hornblende type, but show a somewhat higher degree of gneissification. Biotite is a fairly abundant constituent, but is more or less altered to chlorite. Sometimes, as may be seen on the East branch, two miles below Obushkong lake, chloritized mica forms enclosing films about the large feldspar grains, developing a slight ‘augen’ structure. Stockwork-like quartz veins are frequent, particularly on the West branch between Near and Sedge lakes and at the south end of Kenisheong lake. At the latter point the biotite gneiss is well foliated and steeply tilted. A body of deep red, biotite granite of undetermined extent and relationship was observed on the east side of Kenisheong lake. Pegmatite dikes almost certainly occur in this region, although not actually observed. Near Crotch lake the granite is locally of unusually coarse texture, although not truly pegmatitic.

Although the two granites described appear to be the essential constituents of the Laurentian they usually contain a variable proportion of other material, some of which at least is not really Laurentian. Over the entire area, but more noticeably in the vicinity of contacts with the Keewatin, they include narrow ribbons or lenses of a glistening stratiform hornblende gneiss, closely resembling the gneiss of this sort described under the Keewatin system. In some cases these bands are portions of the Keewatin caught up by the Laurentian material at the time of its intrusion and highly metamorphosed by it. Excellent examples of this may be seen on the East branch at the foot of the marshy stretch two miles below Obushkong lake. These inclusions are mapped as Laurentian, being an almost constant feature, and for map purposes inseparable from it. They are to be distinguished—a difficult matter—from other dark inclusions believed to be drawn out, basic segregations of Laurentian magmas; the latter are commonly less sharply defined.

Like the other formations of the region, the Laurentian is cut by diabase dikes of post-Huronian age which, owing to their dark colour, are conspicuous among the lighter granite rocks. In the neighbourhood of Zigzag lake they are abundant, and are usually from twenty to sixty feet or more in width, the smaller of which are not large enough to map.

The relationships of the Laurentian to the other systems of the region are expressed by the contacts with them. Between Obushkong and Firth lakes and toward L’Africain lake it is largely in contact with Keewatin. This contact is a vaguely defined zone rather than a line, the formations being separated by the intermediate strip containing mingled portions of both. Proceeding across this strip from the Laurentian to the Keewatin, the gneisses of the former become charged with ribbons of highly crystalline schist, already described. Near the Keewatin edge these increase in quantity and sometimes appear as tongue-like protrusions of that system. This condition exists along the east of L’Africain lake; on the shores of the lake the formation is dominantly Keewatin, but the stratiform hornblende gneiss is traversed along the strike by thin bands of Laurentian hornblende gneiss. A few chains eastward the gneiss bands are wider, and, at a distance of 10 chains, hornblende granite is continuous.

Where terminated by diabase the contact is definite and not marked by notable alteration on either side. Contacts with the Huronian are equally sharp and unconformable, in every case the Laurentian disappearing beneath the sedimentary formation; at the south end of Kenisheong lake the Huronian has been trenched to a depth sufficient to expose the underlying gneissic floor near the water’s edge.