Let us suppose that the centre around which oscillates, on the one part, the moon while drawing near and receding from the earth; on the other, the earth while drawing near and receding from the sun: let us suppose that these centres oscillate in the same manner around other centres as yet undetermined,—and this hypothesis is very rational, since it is based on the principle that everything moves or changes,—it may happen that in these periodical oscillations, one or more of the circulating masses will eventually fall into their focus of attraction, or will start so widely astray that the wheelwork of our world, the various parts of our planetary system, will separate,—not to be annihilated, for nothing in the universe can be annihilated,—but to be metamorphosed, and group themselves elsewhere in a different order.[87]
It is thus that in chemistry, which I would call the astronomy of atoms, it is shown that bodies are only so far decomposed as to admit of their recombination in new forms; the end of one is the beginning of another.
Now, that which is true of the systems of the elementary bodies composing terrestrial matter, is, in all probability, true also—why should it not be?—of the systems of the celestial bodies.
Differences of magnitude, of space, and of time, which overwhelm our feeble imaginations, vanish before the unity of plan of the Creator's thought. A crystalline molecule, which will not affect the finest balance, is a world, with an equator and poles of its own, and its central atom round which atomic satellites gravitate. Whether these atoms are infinitely small or infinitely great, whether the time of their revolutions is measured by thousandths of a second or by myriads of years, is of little importance so far as their gravitation (ponderation, or poising) is concerned. For this ponderation is absolutely identical, whether we call it affinity,—when speaking of the atomic movements of chemically decomposable matter; or gravitation or attraction, when referring to those atoms of the great whole which we call stars, and whose metamorphic scale is far beyond the range of beings planted on the surface of one of the stellar atoms. However profound may be the researches of our astronomers, they will never attain to a knowledge of the metamorphoses of worlds. The spectacle of celestial spheres rising anew from their ashes, like "the Arabian bird" of fable, will be as impossible for them as the knowledge of the decompositions and recompositions of our material bodies would be for chemists, planted on the surface of an atom of carbon. How, from such a standpoint, could they contemplate the manifold forms of matter, and embrace at a glance all its changes?... Well, we are relatively as powerless as these imaginary denizens of an atom of matter, rooted as we are to the crust of a planet,—a molecule suspended in the eternal ocean.
What shall we now say of the forms and movements of living matter?
In the first place, that they are infinitely more varied and more changeful than those of inanimate nature. Next, that the difference between their metamorphoses is very wide. The eye can follow the transformations of a rock exposed to the decomposing action of the agents which surround us on every side. This action is calculable, and the elements which it has dissociated may be determined and weighed. The effects of the force, called either affinity or attraction, which maintains these elements united, are not beyond the range of our observation; tables of affinity, and of atomic weights, have been constructed, which enable the chemist to dominate over matter, just as the astronomer embraces the stars, the atoms of the world, by the law of universal gravitation.
But no sooner is matter interpenetrated by that mysterious force which we call life, than our most potent means of investigation suddenly cease to be efficient. Undoubtedly, you may analyse the seed before you sow it, and thus may ascertain that it consists of carbon, hydrogen, oxygen, and azote. But with the same elements attempt to recompose your seed, using exactly the same proportions as those you discovered in it; and if you think that your synthesis has been successful, ensure that your grain, once confided to the earth, shall become a focus of divers movements, giving birth below to the ramifications of the root, terminated by the spongioles,—above, to the ramifications of the stem, garnished with leaves, flowers, and fruits; finally, ensure that this aggregate of organs, multiplying millions of times the weight and volume of the seed, shall always and exactly reproduce the same type or the same species.
If, with your apparatus,—if, with the means at the disposal of humanity,—you should succeed in achieving all these marvels of nature; then perhaps you might settle the great problem of what life is,—whether an independent force, or a simple modification of an universal force, of which heat, light, electricity, and magnetism, will be but different modes of manifestation.