It was to this objection, as the most serious, that Columbus principally addressed his reply. And he replied by discovering the New World. But had not this daring genius been supported in his projects by the Spanish sovereigns, Ferdinand and Isabella, he would have been handed over to the Inquisition, and condemned as a heretic. It was then so dangerous to believe in the Antipodes, that a Bishop of Salzburg was deposed from his episcopal throne, and deprived of his ecclesiastical dignity, by the Pope Zacharias, for having countenanced the heresy.

We now know why, for a whole series of centuries, men would not follow in the footsteps of Aristotle, who was the first to establish theoretically the sphericity of the earth.

The discovery of the New World, and the voyages of circumnavigation which rapidly succeeded one another, demonstrated, not only that inhabitants there are whose feet are opposite to ours, but that the earth does not rest upon any species of support; that it floats, like a star, freely in space.

The ice was broken. The question of the earth's figure was revived, and, this time, discussed in a new light.

Is the earth perfectly round?

Copernicus never doubted it; he who was the first, after Pythagoras, to represent our planet as revolving round the sun. The geometrical sphericity of the earth wonderfully harmonised with the perfect circles in which he supposed the planets to move. Kepler, who had first laid a sacrilegious hand on the holy figure of the circle, and on the circular orbits of the stars, never ventured, however, to dispute the perfect rotundity of the earth; it appeared to him a matter beyond all controversy. Galileo was the first to hazard a doubt. But this doubt became a certainty only through the labours of Huygens.

Galileo, who died in the very year that Newton was born (1642), had discovered, as we know, that all bodies, in falling, obey an uniformly accelerative force, called gravitation, and that the space traversed increases as the square of the time occupied in their descent. Huygens perceived that gravity varies according to the parallels of latitude, and it was not long before he demonstrated, by the number of oscillations which a pendulum of a certain length performs in a certain time, that it diminishes in a regular ratio as we approach the Equator, where it reaches its minimum, and that it augments, on the contrary, in due proportion as we approach the Poles, where it must attain its maximum. Strong in this knowledge, and knowing, moreover, that the material molecules, uniformly distributed in the volume of a sphere, act upon a point of its surface as if they were all reunited in the centre of that sphere, Huygens deduced from it the inequality of the equatorial and the polar radius; he attempted even to determine how much the former exceeded the latter. We know, now-a-days, that this difference is 139,670 feet (41,848,380—41,708,710 feet).

Newton admits, with Huygens, that the earth bulges out at the Equator and is flattened at the Poles; that, in a word, it is a spheroid of revolution. He went much farther: he made the precession of the Equinoxes depend upon this flattening; but he did not furnish its mathematical demonstration. What has been the result? A free skirmishing ground for all opinions.