According to the other theory, it is the sun which occupies the centre of the system, and it is the earth which, accompanied by the remainder of the planets, revolves around it. This theory is likewise of considerable antiquity, though generally known as the Copernican system. But four-and-twenty centuries prior to the epoch of Nicholas Copernicus, it was taught by the "Samian sage," Pythagoras, and his disciples. The system then in acceptance, however, imposed upon them the necessity of silence. Ptolemæus was acquainted with it, but endeavoured to turn it into ridicule. "There are people," he says, "who pretend that heaven is immovable, and that it is earth which revolves on its own axis; evidently these individuals are unaware how supremely absurd is their opinion (πάνμ γελοιότατον)." And it was in the name of logic and mathematics that Ptolemæus thus treated the Pythagoreans!

In the system of Copernicus,—the diurnal movement of the right sphere,—it is the earth's rotation upon its own axis which, being prolonged into the heavens, marks there, by its extremities, what are called the Poles of the world, just as the Equator of the world is simply the prolongation of the terrestrial Equator. As for the Equator of the oblique sphere (the Ecliptic), in which the sun apparently moves, it is, in reality, the identical plane in which the earth moves during its annual revolution round the sun. Now, in this movement of translation, the axis of the earth does not remain constantly parallel to itself; it deviates,—very slightly, it is true,—and so as to be scarcely perceptible to several generations of men. It is then quite natural that our successors should see, for a long time to come, the northern pole of the starry sphere near the extremity of the tail of Ursa Minor. But, two thousand years hence, this slow deviation will have become very perceptible; astronomers will then see the pole of the world in another constellation, and, as this displacement is continuous, the prolonged axis of the earth will have traced on the firmament, in 25,000 to 26,000 years, a circle parallel to the plane of the Ecliptic, and having for its centre the pole of that plane. This circle is the base of a cone whose summit rests upon the earth. (Fig. 27, a.)

Fig. 27.

But this imaginary defined circle (which appears elliptic on account of the perspective) is but the mean of a series of oscillations around the pole of the world, which changes its position, as we have just shown. (Fig. 27, b.) These oscillations originate in the circumstance that the axis of the earth inclines alternately forward and backward, in such wise, that a star, after having approached the Pole, immediately afterwards recedes from it; they cause the terrestrial globe to resemble the head of a man who, by an alternation of gesture, says alternately yes and no. Only, while man (the puppet!) occupies but a second or two in affirming and denying the same thing, the earth employs about eighteen years and a half in inclining once forward to say yes (in Latin, adnuere), and once backward to say no (in Latin, abnuere). This is scientifically denominated the nutation of the earth.

Who was the fortunate mortal to discover a phenomenon so singular? Bradley, the English astronomer; the same who discovered the aberration of light. It was in the course of his researches to determine the annual parallax or distance of the stars that, at an interval of nineteen years, he made, in 1728, the discovery of the aberration of light, and, in 1747, that of nutation.

The reader may not be displeased to know under what circumstances he accomplished the latter discovery. While observing, for several successive years, the circumpolar stars, and notably the star γ in Draco,—a constellation situated between Ursa Major and Ursa Minor (see Fig. 2, p. 9),—Bradley noticed that this star changed its position by a movement constantly directed towards the north, from 1727 to 1736, or for a period of nine years. When it had reached the latter limit, the star appeared stationary for a moment, and then retraced its course in a southerly direction. Would it also occupy a period of nine years to arrive at the limit of this contrary excursion? Bradley affirmed that it would, and communicated his prediction to a French astronomer, Le Monnier.

How was Bradley led to appear in the new character of a seer?

By two special circumstances—the universality, and the duration of the phenomenon.

If the star γ in Draco had been the only one to direct its course towards the north, Bradley would probably have been led to believe that the Pole exercised upon it a peculiar attraction; but he perceived that many other stars rose in like manner towards the Pole with an uniform and constant march; it was, therefore, more natural to suppose that the Pole advanced towards them. And what strengthened the probability of this hypothesis was, that the stars situated in the neighbourhood of the course of the solstices exhibited a corresponding displacement. But there was already recognised as in existence a peculiar movement which explained the precession of the equinoxes. Was it necessary, therefore, to suppose a second, a kind of rotatory movement? Newton had already thought of it, by imagining a nutation, through which the Pole might alternately rise and sink on the plane of the Ecliptic in the space of a year. But the displacement which occurs in that interval is too slight to be perceptible to observation. There might, therefore, be a reasonable doubt of the accuracy of Newton's idea.