Let us now apply these facts to fire-clay in fireplaces, beginning with ordinary open grates used for the warming of apartments; first supposing that we have an ordinary old-fashioned grate all made of iron—front, sides, and back, as well as bars, and next that we have another of similar form and position, but all the fire-box and the back and cheeks of the grate made of fire-clay.

It is evident that the fire-clay not in actual contact with the coals, but near to them, will absorb more heat than the iron, and thus become hotter. Even at the same temperature it will radiate much more heat than iron, but being so much hotter this advantage will be proportionately increased. An open fireplace lined throughout with fire-clay thus throws into the room a considerable amount of its own radiation in addition to that thrown out from the coal.

But what becomes of this portion of the heat when the fireplace is all of metal? It is carried up the chimney by convection, for the metal, while it parts with less heat by radiation, gives up more to the air by direct contact. Therefore, if we must burn our coals inside the chimney, we lose less by burning them in a fire-clay box than in a metal box.

Count Rumford demonstrates this, and described the best form of open firegrate that can be placed in an ordinary English hole-in-the-wall fireplace. The first thing to be done, according to his instructions, is to brick up your large square fireplace recess, so that the back of it shall come forward to about 4 inches from the front inside face of the chimney, thus contracting the throat of the chimney, just behind the mantel, to this small depth (Rumford’s device for sweeping need not be here described). The sides or “covings” of this shallowed recess are now to be sloped inwards so that each one shall horizontally be at an angle of 135 deg. to the plane of this new back, and meet it at a distance of six or more inches apart, according to the size of grate required. The covings will thus spread out at right angles with each other, and leave an annular opening to be lined with fire-brick, and run straight up to the chimney. The fire-bars and grate-bottom to be simply let into this as far forward as possible.

By this simple arrangement we get a fire-grate with a narrow flat back and out-sloping sides; all these three walls are of fire-brick; the back radiates perpendicularly across the room; and the sloping sides radiate outwards, instead of merely across the fire from one to the other, as when they are square to the walls.

At Rumford’s time our ordinary fireplaces were square recesses; now we have adopted something like his suggestion in the sloping sides of our register grates, and we bring our fireplaces forward. We have gone backwards in material, by using iron, but this, after all, may be merely due to the ironmongery interest overpowering that of the bricklayers. The preponderance of this interest in the South Kensington Exhibition may account for the fact that Rumford’s simple device was not to be seen in action there. It could not pay anybody to exhibit such a thing, as nobody can patent it, and nobody can sell it. I have seen the Rumford arrangement carried out in office fireplaces with remarkable success. To apply it anywhere requires only an intelligent bricklayer, a few bricks, and some iron bars.

Although nobody exhibited this, a very near approach to it was described in an admirable lecture delivered at South Kensington, by Mr. Fletcher, of Warrington. In one respect Mr. Fletcher goes further than Count Rumford in the application of fire-clay. He makes the bottom of the fire-box of a slab of fire-clay instead of ordinary iron fire-bars. This demands a little more trouble and care in lighting the fire, owing to the absence of bottom-draught, but when the fire is well started the advantages of this further encasing in fire-clay are considerable. They depend upon another effect of the superior radiant and absorbent properties of fire-clay that I will now explain.

So far, I have only described the beneficial effect of its radiation on the room to be heated, but it performs a further duty inside the fireplace itself. Being a bad conductor, it does not readily carry away the heat of the burning coal that rests upon it, and being also an excellent absorber, it soon becomes very hot—i.e., superficially hot, or hot where its heat is effective. This action may be seen in a common register stove with fire-clay back and iron sides. When the fire is brisk the back is visibly red-hot, while the sides are still dull. If, after such a fire has burnt itself out, we carefully examine the ashes, there will be found more fine dust in contact with the fire-brick than with the iron—i.e., evidence of more complete combustion there; and one of the advantages justly claimed by Mr. Fletcher is, that with his solid fire-clay bottom there will be no unburnt cinders—nothing left but the incombustible mineral ash of the coal. Economy and abatement of smoke are the necessary concomitants of such complete combustion.

A valuable “wrinkle” was communicated by Mr. Fletcher. The powdered fire-clay that is ordinarily sold is not easily applied on account of its tendency to crumble and peel off the back and sides of the stove after the first heating. In order to overcome this, and obtain a fine compact lining, Mr. Fletcher recommends the mixing of the fireclay powder with a solution of water-glass (silicate of soda) instead of simple water. It acts by forming a small quantity of glassy silicate of alumina, which binds the whole of the clay together by its fusion when heated.

Londoners, and, in fact, Englishmen generally, have hitherto regarded anthracite as a museum mineral and a curiosity, rather than an everyday coal-scuttle commodity. If it is to be the fuel of the future, it is very desirable that we should all know something about its merits and demerits, as well as the possibilities of supply.