There is, however, one case in which a fire appears to thus consume its own smoke, but the appearance is delusive. I refer to fires lighted from above. These, if properly managed, are practically smokeless, and it is commonly supposed that smoke passes from the raw coal below through the burning coal above, and is thereby consumed. The fact is, however, that no such smoke is formed. That which under these conditions comes from the coal beneath, when gradually heated by the fire above, is combustible gas, and this gas is burned as it passes through the fire. In this case the formation or non-formation of smoke depends mainly on how this gas is burned, whether completely or incompletely. If the air supplied for its combustion is insufficient, smoke will be formed as it is when we turn up an Argand gas-flame so high that the gas is too great in proportion to the quantity of air that can enter the glass chimney.
Herein lies the fundamental principle. We may prevent smoke, though we cannot cure it, and this prevention depends upon how we supply air to the gas which the coal gives off when heated, and upon the condition of this gas when we bring it in contact with the air by which its combustion is to be effected. We must always remember that coal when its temperature is sufficiently heated, whether in a gas retort or fireplace, gives off a series of combustible hydrocarbon gases and vapors, and all we have to do in order to obtain smokeless fires is to secure the complete combustion of these.
Now we know that to burn a given quantity of gas we must supply it with a sufficient quantity of oxygen, i.e., of the active principle of the air; but this is not all: we all know well enough that if cold coal-gas and cold air be brought together in any proportion whatever no combustion occurs. A certain amount of heat is necessary to start the chemical combination of oxygen with hydrogen and carbon, which combination is the combustion, or burning.
Therefore, when the coal gas and the air are brought together one or the other, or both, must be heated up to a certain point in order that the combustion be complete. If cold there is no combustion; if insufficiently heated, there is imperfect combustion, however well the supplies may be regulated.
A very simple experiment that anybody may make illustrates this. When an ordinary open fire is burning brightly and clearly without flame, throw a few small pieces of raw coal into the midst of the glowing coals. They will flame fiercely, but without smoking. Then throw a heap of coal or one large lump on a similar fire. Now you will have dense volumes of smoke, and little or no flame, simply because the cooling action of the large bulk of coal in the course of distillation brings the temperature of its gases below that required for their complete combustion.
This simple experiment supplies a most important practical lesson, as well as a philosophical example. The best of all smoke-abatement machines is an intelligent and conscientious stoker, and every contrivance for smoke abatement must, in order to be efficient, either be fed by such a stoker or provided with some automatic arrangement by which the apparatus itself does the work of such a stoker by supplying the fresh fuel just when and where it is wanted.
Cornish experience is very instructive in this respect. The engines that pump the water from the mines do a definitely measurable amount of work, and are made to register this. The stoker is a skilled workman, and prizes are given to those who obtain the largest amount of “duty” from given engines per ton of coal consumed. Instead of pitching his coal in anyhow, cramming his fire-hole, and then sitting down to sleep or smoke in company with his chimney, the Cornish, or other good fireman, feeds little and often, and deftly sprinkles the contents of his shovel just where the fire is the brightest and the hottest, and the bars are the least thickly covered. The result is remarkable. A colliery proprietor of South Staffordshire was visiting Cornwall, and went with a friend to see his works. On approaching the engine-house and seeing a whitewashed shaft with no smoke issuing from its mouth, he expressed his disappointment at finding that the engine was not at work. To all who have been accustomed to the “Black Country,” where coal is so shamefully wasted because it is cheap, the tall clean whitewashed shafts of Cornwall, all so smokeless, present quite an astonishing appearance.
This is not a result of “smoke-consuming” apparatus, but mainly of careful firing. It was in the first place promoted by the high price of coal due to the cost of carriage before the Cornish railways were constructed, and it brought about a curious result. Horse-power for horse-power the cost of fuel for working Cornish pumping engines has been brought below that of pumping engines in the places where the price of coal per ton was less than one-half. Another coal famine that should raise the price of coal in London to 60s. per ton, and keep it there for two or three years, would effect more smoke abatement than we can hope to result from the present and many future South Kensington efforts. I need scarcely dwell upon the necessity for a due supply of air. This is well understood by everybody. An over supply of air does mischief, by carrying away wastefully a proportionate quantity of heat. The waste due to this is sometimes very serious.
After reviewing all that has been done, the conclusion that London cannot become a clean, smokeless, and beautiful city, so long as we are dependent upon open fire-grates of anything like ordinary construction, and fed with bituminous coal, is inevitable. The general use of anthracite would effect the desired change, but there is no hope of its becoming general without legislative compulsion, and Englishmen will not submit to this.
One of the most hopeful schemes is that which was propounded a short time since by Mr. Scott Moncrieff. Instead of receiving our coal in its crude state he proposes that we should have its smoke-producing constituents removed before it is delivered to us; that it should be made into a sort of artificial semi-anthracite at the gas-works by a process of half distillation, which would take away not all the flaming gas as at present, but that portion which is by far the richest to the gas-maker and the most unmanageable in common fires. We should thus have a material which, instead of being so difficult to light as coke and anthracite, would light more easily than crude coal, and at the same time our gas would have far greater illuminating power, as it would all be drawn off during the early period of distillation, when it is at its richest. From a given quality of coal the difference would be as twenty-four candles to sixteen. The ammonia which we now throw into the air, the naphtha and coal-tar products, which we waste, are so valuable that they would pay all the expenses at the gas-works and leave a handsome profit. We should thus get gas so much better that two burners would do the work now obtained from three. We should get all we require for lighting purposes and plenty more for heating; the intermediate profits of the coal merchant would be abolished, and our solid fuel of far better quality could be supplied twenty or thirty per cent cheaper than at present, provided always that the gas monopoly were abolished, “a consummation most devoutly to be wished for.”