Such dwellings being thus ventilated and rendered habitable for man and beast, it is idle to dispute the practical possibility of supplying fresh air of any given temperature to a mere box of brick or stone, standing in the midst of the atmosphere, and containing but a few passages and apartments.

The problem is solved in the coal-pit by simply and skilfully controlling and directing the natural movements of unequally-heated volumes of air. Complex mechanical devices for forcing the ventilation by means of gigantic fan-wheels, etc., or by steam-jets, have been tried, and are now generally abandoned. An inlet and an outlet are provided, and no air is allowed to pass inwards or outwards by any other course than that which has been pre-arranged for the purposes of efficient ventilation. I place especial emphasis on this condition, believing that its systematic violation is the primary cause of the bungling muddle of our domestic ventilation.

Let us suppose that we are going to open a coal-pit to mine the coal on a certain estate. We first ascertain the “dip” of the seam, or its deviation from horizontality, and then start at the lowest part, not, as some suppose, at that part nearest to the surface. The reason for this is obvious on a little reflection, for if we began at the shallowest part of an ordinary water-bearing stratum we should have to drive down under water; but, by beginning at the lowest part and driving upwards, we can at once form a “sumpf,” or bottom receptacle, to receive the drainage, and from which the accumulated water may be pumped. This, however, is only by the way, and not directly connected with our main subject, the ventilation.

In order to secure this, the modern practice is to sink two pits, “a pair,” as they are called, side by side, at any convenient distance from each other. If they are deep, it becomes necessary to commence ventilation of the mere shafts themselves in the course of sinking. This is done by driving an air-way—a horizontal tunnel from one to the other, and then establishing an “upcast” in one of them by simply lighting a fire there. This destroys the balance between the two communicating columns of air; the cooler column in the shaft without a fire, being heavier, falls against the lighter column, and pushes it up just as the air is pushed up one leg of an U tube when we pour water down the other. Even in this preliminary work, if the pits are so deep that more than one air-way is driven, it is necessary to stop the upper ways and leave only the lowest open, in order that the ventilation shall not take a short and useless cut, as it does up our fireplace openings.

Let us now suppose that the pair of pits are sunk down to the seam, with a further extension below to form the water sumpf. There are two chief modes of working a coal-seam: the “pillar and stall” and the “long wall,” or more modern system. For present illustration, I select the latter as the simplest in respect to ventilation. This method, as ordinarily worked, consists essentially in first driving roads through the coal, from the pits to the outer boundary of the area to be worked, then cutting a cross road that shall connect these, thereby exposing a “long wall” of coal, which, in working, is gradually cut away towards the pits, the roof remaining behind being allowed to fall in.

Let us begin to do this by driving, first of all, two main roads, one from each pit. It is evident that as we proceed in such burrowing, we shall presently find ourselves in a cul de sac so far away from the outer air that suffocation is threatened. This will be equally the case with both roads. Let us now drive a cross-cut from the end of each main road, and thus establish a communication from the downcast shaft through its road, then through the drift to the upcast road and pit. But in order that the air shall take this roundabout course, we must close the direct drift that we previously made between the two shafts, or it will proceed by that shorter and easier course. Now we shall have air throughout both our main roads, and we may drive on further, until we are again stopped by approximate suffocation. When this occurs, we make another cross-cut, but in order that it may act we must stop the first one. So we go on until we reach the working, and then the long wall itself becomes the cross communication, and through this working-gallery the air sweeps freely and effectually.

In the above I have only considered the simplest possible elements of the problem. The practical coal-pit in full working has a multitude of intervening passages and “splits,” where the main current from the downcast is divided, in order to proceed through the various streets and lanes of the subterranean town as may be required, and these divided currents are finally reunited ere they reach the upcast shaft which casts them all out into the upper air.

In a colliery worked on the pillar and stall system—i.e., by taking out the coal so as to leave a series of square chambers with pillars of coal in the middle to support the roof—the windings of the air between the multitude of passages is curiously complex, and its absolute obedience to the commands of the mining engineer proves how completely the most difficult problems of ventilation may be solved when ignorance and prejudice are not permitted to bar the progress of the practical applications of simple scientific principles.

Here the necessity of closing all false outlets is strikingly demonstrated by the mechanism and working of the “stoppings” or partitions that close all unrequired openings. The air in many pits has to travel several miles in order to get from the downcast to the upcast shaft, though they may be but a dozen yards apart. (Formerly the same shaft served both for up and down cast, by making a wooden division (a brattice) down the middle. This is now prohibited, on account of serious accidents that have been caused by the fracture of the brattice.)

But it would not do to carry the coal from the workings to the pit by these sinuous air-courses. What, then, is done? A direct road is made for the coal, but if it were left open, the air would choose it: this is prevented by an arrangement similar to that of canal locks. Valve-doors or “stoppings” are arranged in pairs, and when the “hurrier” arrives with his corve, or pit carriage, one door is opened, the other remaining shut; then the corve is hurried into the space between the doors, and the entry-door is closed; now the exit-door is opened, and thus no continuous opening is ever permitted.