When water boils under the conditions of our ordinary experience, the passage from the liquid to the gaseous state is a sudden leap, with no intermediate state of existence that we are able to perceive; and the conditions upon which water is converted into steam—the liquid into the gas—while both are at the bottom of our atmospheric ocean, are such as to render an intermediate condition rationally, as well as practically, impossible.

We find that the expansive energy by which the steam is enabled to resist atmospheric pressure is conferred upon it by its taking into itself, and utilizing for its expansive efforts a large amount of calorific energy. When any given quantity of water is converted into steam, under ordinary circumstances, its bulk suddenly becomes above 1700 times greater—a cubic inch of water forms about a cubic foot of steam, and nearly 1000 degrees of heat (966·6) disappears as temperature. Otherwise stated, we must give to the cubic inch of water at 212° as much heat as would raise it to a temperature of 212 plus 966·6, or 1,178·6°, if it remained liquid. This is about the temperature of the glowing coals of a common fire; but the steam that has thus taken enough heat to make the water red-hot is still at 212°—no hotter than the water was while boiling.

This heat, which thus ceases to exhibit itself as temperature, is otherwise occupied. Its energy is partly devoted to the work of increasing the bulk of the water to the above-named extent, and partly in conferring on the steam its gaseous specialty—that is, in overcoming liquid cohesion, and substituting for it the opposite property of internal repulsive energy which is characteristic of gases. My reasons for thus defining and separating these two functions of the so-called “latent” heat will be seen when we come to the philosophy of the interesting researches of Dr. Andrews.

As already explained, all gases are now proved to be analogous to steam, they are matter expanded and rendered self-repulsive by heat. All elementary matter may exist in either of the three forms—solid, liquid, or gas, according to the amount of heat and pressure to which it is subjected. I limit this wide generalization to elementary substances for the following reasons:

Many compounds are made up of elements so feebly held together that they become “dissociated” when heated to a temperature below their boiling-point; or, their condition maybe otherwise defined by stating that the bonds of chemical energy, which hold their elements together, are weaker than the cohesion which binds and holds them in the condition of solid or liquid, and are more easily broken by the expansive energy of heat.

To illustrate this, let us take two common and well-known oils—olive oil and turpentine. The first belongs to the class of “fixed oils,” and second to the “volatile oils.” If we apply heat to liquid turpentine, it boils, passes into the state of gaseous turpentine, which is easily condensible by cooling it. If the liquid result of this condensation is examined, we find it to be turpentine as before. Not so with the olive oil. Just as this reaches its boiling point, the heat, which would otherwise convert it into olive-oil vapor, begins to dissociate its constituents, and if the temperature be raised a little higher, we obtain some gases, but these are the products of decomposition, not gaseous olive oil. This is called “destructive” distillation.

In olive oil, the boiling-point and dissociation point are near to each other. In the case of glycerine, these points so nearly approximate that, although we cannot distil it unbroken under ordinary atmospheric pressure, we may do so if some of this pressure is removed. Under such diminished pressure, the boiling-point is brought down below the dissociation point, and condensible glycerine gas comes over without decomposition.

Sugar affords a very interesting example of dissociation, commencing far below the boiling-point, and going on gradually and visibly, with increasing rapidity as the temperature is raised. Put some white sugar into a spoon, and heat the spoon gradually over the smokeless gas-flame or spirit-lamp. At first the sugar melts, then becomes yellow (barley sugar); this color deepens to orange, then red, then chestnut-brown, then dark brown, then nearly black (caramel), then quite black, and finally it becomes a mere cinder. Sugar is composed of carbon and water; the heat dissociates this compound, separates the water, which passes off as vapor, and leaves the carbon behind. The gradual deepening of the color indicates the gradual carbonization, which is completed when only the dry insoluble cinder remains. An appearance of boiling is seen, but this is the boiling of the dissociated water, not of the sugar.

The dissociation temperature of water is far above its boiling-point. It is 5072° Fahr., under conditions corresponding to those which make its boiling-point 212°. If we examine the variations of the boiling-point of water, as the atmospheric pressure on its surface varies, some curious results follow. To do this the reader must endure some figures. They are extremely simple, and perfectly intelligible, but demand just a little attention.

Following are three columns of figures. The first represents atmospheres of pressure—i.e., taking our atmospheric pressure when it supports 30 inches of mercury in the barometer tube as a unit, that pressure is doubled, trebled, etc., up to twenty times in the first column. The second column states the temperature at which water boils when under the different pressures thus indicated. The third column, which is the subject for special study just now, shows how much we must rise the temperature of the water in order to make it boil as we go on adding atmospheres of pressure; or, in other words, the increase of temperature due to each increase of one atmosphere of pressure. The figures are founded on the experiments of Regnault.