There is yet another consideration, and one of vital importance, to be taken into account, viz., that—whether we use the electric light derived from a dynamo-electric source, or coal-gas—our primary source of illuminating power is coal, or rather the chemical energy derivable from the combination of its hydrogen and carbon with oxygen. Now this chemical energy is a limited quantity, and the progress of Science can no more increase this quantity than it can make a ton of coal weigh 21 cwts. by increasing the quantity of its gravitating energy.

The demonstrable limit of scientific possibilities is the economical application of this limited store of energy, by converting it into the demanded form of force without waste. The more indirect and roundabout the method of application, the greater must be the loss of power in the course of its transfer and conversion. In heating the boiler that sets the dynamo-electric machine to work, about one-half the energy of the coal is wasted, even with the best constructed furnaces. This merely as regards the quantity of water evaporated. In converting the heat-force into mechanical power—raising the piston, etc., of the steam-engine—this working half is again seriously reduced. In further converting this residuum of mechanical power into electrical energy, another and considerable loss is suffered in originating and sustaining the motion of the dynamo-electric machine, in the dissipation of the electric energy that the armature cannot pick up, and in overcoming the electrical resistances to its transfer.

I am unable to state the amount of this loss in trustworthy figures, but should be very much surprised to learn that, with the best arrangements now known, more than one-tenth of the original energy of the coal is made practically available. This small illuminating residuum may, and doubtless will, be increased by the progress of practical improvement; but from the necessary nature of the problem, the power available for illumination at the end of the series must always be but a small portion of that employed at the beginning.

In burning the gas derived from coal we obtain its illuminating power directly, and if we burn it properly we obtain nearly all. The coke residuum is also directly used as a source of heat. The chief waste of the original energy in the gas-works is represented by that portion of the coke that is burned under the retorts, and in obtaining the relatively small amount of steam-power demanded in the works. These are far more than paid for by the value of the liquid hydrocarbons and the ammonia salts, when they are properly utilized.

In concluding my narrative, I may add that after Mr. Starr’s death the patentees offered to engage me on certain terms to carry on his work. I declined this, simply because I had seen enough to convince me of the impossibility of any success at all corresponding to their anticipations. During the intervening thirty years I have abstained from further meddling with the electric light, because all that I had seen then, and have heard of since, has convinced me that—although as a scientific achievement the electric light is a splendid success—its practical application to all purposes where cost is a matter of serious consideration is hopeless, and must of necessity continue to be so.

Whoever can afford to pay some shillings per hour for a single splendid light of solar completeness can have it without difficulty, but not so where the cost in pence per hour per burner has to be counted.

I should add that before the publication of King’s specification, Mr. (now Sir William) Grove proposed the use of a helix or coil of platinum, made incandescent by electricity, as a light to be used for certain purposes. This was shown at the Royal Society on or about December 1, 1845.

Since the publication of the above in 1879, I have learned, from a paper in the “Quarterly Journal of Science,” by Professor Ayrton, that in 1841 an English patent was granted to De Moylens for electric lighting by incandescence.


THE FORMATION OF COAL.