In such a case negative results do not refute the positive observations of qualified men, especially when several of such observations have been made independently; the phenomenon is but instantaneous, a mere flash of bright stripes in place of dark lines across the colored riband of the spectroscope, which happens just at the moment before and after totality, and is presented only when the instrument is accurately directed to the delicate curved vanishing thread of light which is the last visible fragment of the solar outline, and that which makes the first flash of his re-appearance.

A little explanation is necessary to render the significance of this “reversal” intelligible to those who have not specially studied the subject.

1st. When the spectroscope is directed to a luminous solid a simple rainbow-band or “continuous spectrum” is seen. When, on the other hand, the object is a luminous gas or vapor of moderate density, the spectrum is not a continuous band with its colors actually blending; it consists only of certain luminous stripes with blank spaces between them, each particular gas or vapor showing its own particular set of stripes of certain colors, and always appearing at exactly the same place, so invariably and certainly, that, by means of such luminous stripes, the composition of the gas or vapor may be determined. If, however, the gas be much compressed, the stripes widen as the condensation proceeds; they may even spread out sufficiently to meet and form a continuous spectrum like that from a solid. Liquids also produce continuous spectra.

2d. When a luminous solid or liquid, or very dense gas, capable of producing a continuous spectrum, is viewed through an intervening body of other gas or vapor of moderate or small density, fine dark lines cross the spectrum in precisely the same places as the bright stripes would appear if this intervening gas or vapor were luminous and seen by itself.

When the spectroscope is directed to the face of the sun under ordinary circumstances, it presents a brilliant continuous spectrum, striped with a multitude of the dark lines. From this it has been inferred that the luminous face of the sun is that of an incandescent solid or liquid, and that it is surrounded by the gases and vapors whose bright stripes, when artificially produced, occupy precisely the same places as the dark lines of the solar spectrum. This was the theory of Kirchoff and others in the early days of spectrum analysis, when it was only known that solids and liquids were capable of producing a continuous spectrum. The important discovery that gases and vapors, if sufficiently condensed, will also produce a continuous spectrum, opened another speculation, far more consistent with the other known facts concerning the constitution of the sun, viz., that the sun may be a great gaseous orb, blazing at its surface and gradually increasing in density from the surface towards the centre.

According to this, the metals sodium, calcium, barium, magnesium, iron, chromium, nickel, copper, zinc, strontium, cobalt, manganese, aluminium, and titanium, whose vapors, with those of some few other substances, give the dark lines that cross the solar spectrum, should exist neither as solids nor liquids on the solar surface, but as blazing gases. But such blazing gases, according to what I have stated above, should give us bright stripes instead of dark lines. Why, then, are not such bright stripes seen under ordinary circumstances?

This is easily answered. These blazing gases must, as we proceed from the surface of the sun downwards, become so condensed by the pressure of their own superincumbent strata, as to produce a continuous spectrum of great brilliancy. With such a background the bright stripes would be confounded and lost to sight. Besides this, the outer film of cooler vapor through which our vision must necessarily penetrate before reaching the luminous solar surface, will produce the dark lines exactly where the bright stripes should be, and thus effectually obliterate them; or, in other words, the intervening non-luminous vapors are opaque to the particular rays of light which the bright vapors of the same substance emits.

Therefore, according to this theory, if we could sweep away these outside darkening vapors, and screen off the inner layers of denser blazing matter which produces the continuous background, we should have a spectrum displaying a multitude of bright stripes exactly where the black lines of the ordinary solar spectrum appear.

Secchi announced that these bright lines were to be seen under favorable circumstances, when, by skillful management, the rays from the edge of the sun were so caught by the slit of the spectroscope as to exhibit only the spectrum of the superficial layer of the sun’s bright surface. This was disputed at the time by Mr. Lockyer, who, I suspect, omitted to consider the atmospheric difficulties under which English astronomers work, and the fact that the atmosphere of Italy is exceptionally favorable for delicate astronomical observation.

If he had fairly considered this I think he would agree with me in concluding that an observation of this kind, avowedly made with great difficulty and questionable distinctness by so skillful a spectroscopic observer as Father Secchi, could not possibly be seen by any human eyes through a London atmosphere.