The pressure of the wind is similarly pictured by means of a large vane which turns with the wind, and to the windward face of which a flat board or plate of metal, one foot square, is attached perpendicularly. As the wind strikes this it presses against it with a force corresponding to a certain number of pounds, ounces, and fractions of an ounce. A spring like that of an ordinary spring letter-balance is compressed in proportion to this pressure. This movement of the spring is transmitted mechanically to another pencil like the above described, working against the same drum; thus another history is written on the same paper—the horizontal lines now representing fractions of pounds of pressure, instead of fractions of inches of mercury.
It has been found that if a semi-globular cup of thin metal is exposed to the wind, the pressure upon the round or convex side of the hemisphere is equal to two thirds of that upon the hollow or concave side. By placing four such cups upon cross-arms, and the arms on a pivot, the wind, from whatever quarter it may come, will always blow them round with their convex faces foremost; and they will move with one third of the actual velocity of the wind. By a simple clock-work arrangement, these arms move another pencil, in such a manner that it strikes the paper hammer-fashion every time the wind has completed a journey of one mile, or other given distance; and thus a series of dots upon the revolving paper records the velocity of the wind according to their distances apart. As the pressure of the wind is governed by two factors, viz., the density and velocity of the moving air, the relations between the barometer curve, the pressure curve, and the velocity dots, are very interesting.
The direction of the wind is written by a pencil fixed to a quick worm—a screw-thread upon the axis of the vane. As the vane turns round—N., E., S., or W.—it screws the pencil up or down, and thus the horizontal lines first described as registering tenths of inches of barometric pressure do duty as showing the points of the compass from which the wind is blowing; and, by reference to the zigzag line drawn by this pencil of the wind, its direction at any particular time of day may be ascertained as certified by its own sign-manual.
The wind-gauge is called an anemometer. Connected with this is the pluviometer, or rain-gauge—an upright vessel with an open mouth of measured area—say 100 square inches. This receives the rain that falls. By means of a pipe the water is conveyed to a vessel having a surface of—say one square inch. By this arrangement, when sufficient rain has fallen to cover the surface of the earth to the depth of one hundredth of an inch, the little vessel below will contain water one inch in depth. By balancing this vessel at the end of a long arm, it is made to preponderate gradually as the weight of water it receives increases, and finally, when filled, it tips over altogether, empties itself, and then rises to its starting place in equilibrium. To the other end of this arm a pencil is attached, which inscribes all these movements on the revolving paper, and thus tells the history of the rainfall. The line is zigzag while the rain is falling, and horizontal while the weather is fair. The amount of inclination of the zigzag line measures the depth of rain by means of the same ruled lines on the paper as measure the height of the barometer, etc. Every time the measuring vessel tips over a perpendicular line is drawn, and the pencil resumes its starting level. The papers containing these autographs of the elements may, of course, be kept as permanent records for reference whenever needed, or the results may be tabulated in other forms.
There are many modifications in the details of these self-registering instruments. In some of them photography is made to do a part of the work. The above description indicates the main principles of their construction, without attempting to enter upon minute details.
Meteorological observatories are provided with these instruments, and all nations worthy of the name of civilized co-operate with more or less efficiency in providing and endowing such establishments. They are placed in suitable localities, and communicate with each other, and with certain head-quarters, by means of the electric telegraph. One of these head-quarters is the Meteorological Office, at No. 116 Victoria Street, Westminster, S.W., which daily receives the results of the observations taken at about fifty stations on the British Islands and the Continent. The chief observations are made simultaneously—at 8 A.M.—and telegraphed in cypher to London, where they usually arrive before 10 A.M. As they come in they are marked down in their proper places upon a large chart, and when this chart is sufficiently completed, a condensed or abstract copy is made containing as much information as may be included in the small newspaper charts. This is copied mechanically on a reduced scale on a slab on which the outline chart has been already engraved. This engraving completed, casts are made in fusible metal with the black lines in relief, for printing with ordinary type, and the casts are set up with the ordinary newspaper types, and printed with the letterpress matter.
The engravings overleaf are taken from two of the newspaper weather charts for the dates of October 5th and 6th. They are enlarged and printed more clearly than the originals, with an explanation of signs at foot of the charts.
It will be observed that, in the chart for October 5th, an isobar of 29.2 runs up in a N.E. direction from between the Orkney and Shetland islands, crosses the North Sea, strikes the coast of Norway near Bergen, and then proceeds onwards towards Throndhjem. An isobar of 29.5 crosses Scotland, following very nearly the line of the Grampians, enters the North Sea about Aberdeen, and crosses to Christiansund; then runs up the Skager Rack and Christiania Fjord towards Christiania. Another isobar of 29.8 crosses Ireland through Connaught to Dublin, onward across England by Liverpool and the Humber, over the North Sea, and through Sleswig to the Baltic. These three are nearly parallel; but now we find another isobar—that of 30.2—taking quite a different course, by starting from the Bay of Biscay about Nantes; running on towards Paris and Strasbourg, and then bending sharp round, as though frightened by the Germans, and retreating to the Gulf of Lyons by an opposite course to that on which it started. On the following day all has changed; the northern isobars are running down south-eastwards instead of north-east, and are remarkably parallel. In the left-hand upper corner of this chart is a note that “our west, north, and eastern coasts were warned yesterday.” Why was this? It was mainly because the barometric gradient or incline was so steep. On the 5th there was one inch of difference between the Orkneys and the Bay of Biscay, or between Bergen and Paris, while the barometer was still falling in Norway and at the same moment rising in Ireland and France. On the following day these movements culminated in a gradient of 1.4—nearly one and a half inches—between Cornwall and the ancient capital of Norway.
WEATHER CHART, OCTOBER 5, 1875.