We shall now proceed to the philosophy of these processes.

First, the drainage. Everybody in Ireland knows that the bog holds water like a sponge, and in such quantities that ordinary vegetation is rotted by the excess of moisture. There is good reason to believe that the ancient forests, which once occupied the sites of most of the Irish bogs, were in some cases destroyed by the rotting of their stems and roots in the excess of vegetable soil formed by generations upon generations of fallen leaves, which, in a humid climate like that of Ireland, could never become drained or air-dried.

But this is not all. There is rotting and rotting. When the rotting of vegetable matter goes on under certain conditions it is highly favorable to the growth of other vegetation, even of the vegetation of the same kind of plants as those supplying the rotting material. Thus, rotten and rotting straw is a good manure for wheat; and the modern scientific vine-grower carefully places the dressing of his vines about their roots, in order that they may rot, and supply the necessary salts for future growth. The same applies generally; rotting cabbage-leaves supply the best of manure for cabbages; rotting rhubarb-leaves for rhubarb; rose-leaves for rose-trees; and so on throughout the vegetable kingdom.

Why, then, should the bog-rotting be so exceptionally malignant? As I am not aware that any answer has been given to this question, I will venture upon one of my own. It appears to be mainly due to the excess of moisture preventing that slow combustion of vegetable carbon which occurs wherever vegetable matter is heaped together and slightly moistened. We see this going on in steaming dung-hills; in hayricks that have been stacked when imperfectly dried; in the spontaneous combustion of damp cotton in the holds of ships, and in factories where cotton-waste has been carelessly heaped; and in cucumber-frames and the other “hot-beds” of the gardener.

In ordinary soils this combustion goes on more slowly, but no less effectively, than in these cases. In doing so it maintains a certain degree of warmth about the roots of the plants that grow there, and gradually sets free the soluble salts which the rotting vegetables contain, and supplies them to the growing plants as manure, at the same time forming the humus so essential to vegetation.

A great excess of water, such as soddens the bog, prevents this, and also carries away any small quantity of soluble nutritious salts the soil may contain. Thus, instead of being warmed and nourished by slight humidity, and consequent oxidation, the bog soil is chilled and starved by excess of water.

The absolute necessity of the first operation—that of drainage—is thus rendered obvious; and I suspect that the need of four years’ rest, upon which Mr. MacAlister insists, is somehow connected with a certain degree of slow combustion that accompanies and partially causes the consolidation of the bog. I have not yet had an opportunity of testing this by inserting thermometers in bogs under different conditions, but hope to do so.

The liming next demands explanation. Mr. Henry says that “it leaves the soil sweetened by the neutralization of its acids.”

In order to test this theory I have digested (i.e., soaked) various samples of turf cut from Irish bogs in distilled water, filtered off the water, and examined it. I find that when this soaking has gone far enough to give the water a coloring similar to that which stands in ordinary bogs, the acidity is very decided—quite sufficiently so to justify this neutralization theory as a partial explanation. There is little reason to doubt that the lime is further effective in enriching the soil; or, in the case of pure bogs, that it forms the soil by disintegrating and decomposing the fibrous vegetable matter, and thus rendering it capable of assimilation by the crops.

Another effect which the lime must produce is the liberation of free ammonia from any fixed salts that may exist in the bog.