I have considered the subject carefully, and discussed it with many people; the result of such reflection and conversation is a conviction that the prevalent popular estimate of the dangers of Commander Cheyne’s project extravagantly exaggerates them on almost all contingencies. I do not affirm that there is no risk, or that the attempt should be made with only our present practical knowledge of the subject, but I do venture to maintain that, after making proper preliminary practical investigations at home, a judiciously conducted aerostatic dash for the Pole will be far less dangerous than the African explorations of Livingstone, Stanley, and others that have been accomplished and are proposed. And further, that a long balloon journey starting in summer-time from Smith’s Sound, or other suitable Arctic station, would be less dangerous than a corresponding one started from London; that it would involve less risk than was incurred by Messrs. Holland, Mason, and Green, when they traveled from Vauxhall Gardens to Nassau.

The three principal dangers attending such a balloon journey are: 1st. The variability of the wind. 2d. The risk of being blown out about the open ocean beyond the reach of land. 3d. The utter helplessness of the aeronaut during all the hours of darkness. I will consider these seriatim in reference to Arctic ballooning versus Vauxhall or Crystal Palace ballooning.

As regards the first danger, Vauxhall and Sydenham are in a position of special disadvantage, and all the ideas we Englishmen may derive from our home ballooning experience must tend to exaggerate our common estimate of this danger, inasmuch as we are in the midst of the region of variable winds, and have a notoriously uncertain climate, due to this local exaggeration of the variability of atmospheric movements. If instead of lying between the latitudes of 50° and 60°, where the N.E. Polar winds just come in collision with the S.W. tropical currents, and thereby effect our national atmospheric stir-about, we were located between 10° and 30° (where the Canary Islands are, for example), our notions on the subject of balloon traveling would be curiously different. The steadily blowing trade-wind would long ere this have led us to establish balloon mails to Central and South America, and balloon passenger expresses for the benefit of fast-going people or luxurious victims of sea-sickness. To cross the Atlantic—three thousand miles—in forty-eight hours, would be attended with no other difficulty than the cost of the gas, and that of the return carriage of the empty balloon.

It is our exceptional meteorological position that has generated the popular expression “as uncertain as the wind.” We are in the very centre of the region of meteorological uncertainties, and cannot go far, either northward or southward, without entering a zone of greater atmospheric regularity, where the direction of the wind at a given season may be predicted with more reliability than at home. The atmospheric movements in the Arctic regions appear to be remarkably regular and gentle during the summer and winter months, and irregular and boisterous in spring and autumn. A warm upper current flows from the tropics towards the Pole, and a cold lower one from the Arctic circle towards the equator. Commander Cheyne, who has practical experience of these Arctic expeditions, and has kept an elaborate log of the wind, etc., which he has shown me, believes that, by the aid of pilot balloons to indicate the currents at various heights, and by availing himself of these currents, he may reach the Pole and return to his ship, or so near as to be able to reach it by traveling over the ice in light sledges that will be carried for that purpose. In making any estimate of the risk of Arctic aerostation, we must banish from our minds the preconceptions induced by our British experience of the uncertainties of the wind, and only consider the atmospheric actualities of the Polar regions, so far as we know them.

Let us now consider the second danger, viz., that of being blown out to sea and there remaining until the leakage of gas has destroyed the ascending power of the balloon, or till the stock of food is consumed. A glance at a map of the world will show how much smaller is the danger to the aeronaut who starts from the head of Baffin’s Bay than that which was incurred by those who started from Vauxhall in the Nassau balloon, or by Captain Roher, who started from Paris. Both of these had the whole breadth of the Atlantic on the W. and S.W., and the North Sea and Arctic Ocean N. and N.E. The Arctic balloon, starting from Smith’s Sound or thereabouts, with a wind from the South (and without such a wind the start would not, of course, be made), would, if the wind continued in the same direction, reach the Pole in a few hours; in seven or eight hours at Roher’s speed; in fourteen or fifteen hours at the average rate made by the Nassau balloon in a “moderate breeze.” Now look again at the map and see what surrounds them. Simply the continents of Europe, Asia, and America, by which the circumpolar area is nearly land-locked, with only two outlets, that between Norway and Greenland on one side, and the narrow channel of Behring’s Straits on the other. The wider of these is broken by Spitzbergen and Iceland, both inhabited islands, where a balloon may descend and the aeronauts be hospitably received. Taking the 360 degrees of the zone between the 70th parallel of latitude and the Arctic circle, 320 are land-locked and only 40 open to the sea; therefore the chances of coming upon land at any one part of this zone is as 320 to 40; but with a choice of points for descent such as the aeronauts would have unless the wind blew precisely down the axis of the opening, the chances would be far greater. If the wind continued as at starting, they would be blown to Finland; a westerly deflection would land them in Siberia, easterly in Norway; a strong E. wind at the later stage of the trip would blow them back to Greenland.

In all the above I have supposed the aeronauts to be quite helpless, merely drifting at random with that portion of the atmosphere in which they happened to be immersed. This, however, need not be the case. Within certain limits they have a choice of winds, owing to the prevalence of upper and lower currents blowing in different and even in opposite directions. Suppose, for example, they find themselves N. of Spitzbergen, where “Parry’s furthest” is marked on some of our maps, and that the wind is from the N.E., blowing them towards the Atlantic opening. They would then ascend or descend in search of a due N. or N. by W. wind that would blow them to Norway, or W.N.W. to Finland, or N.W. to Siberia, or due E. back to Greenland, from whence they might rejoin their ships. One or other of these would almost certainly be found. A little may be done in steering a balloon, but so very little that small reliance should be placed upon it. Only in a very light wind would it have a sensible effect, though in case of a “near shave” between landing, say at the Lofodens or Iceland, and being blown out to sea, it might just save them.

As already stated, Commander Cheyne believes in the possibility of returning to the ship, and bases his belief on the experiments he made from winter quarters in Northumberland Sound, where he inflated four balloons, attached to them proportionately different weights, and sent them up simultaneously. They were borne by diverse currents of air in four different directions according to the different altitudes, viz., N.W., N.E., S.E., and S.W., “thus proving that in this case balloons could be sent in any required direction by ascending to the requisite altitude. The war balloon experiments at Woolwich afford a practical confirmation of this important feature in aerostation.” Cheyne proposes that one at least of the three balloons shall be a rover to cross the unknown area, and has been called a madman for suggesting this merely as an alternative or secondary route. I am still more lunatic, for I strongly hold the opinion that the easiest way for him to return to his ship will be to drift rapidly across to the first available inhabited land, thence come to England, and sail in another ship to rejoin his messmates; carrying with him his bird’s-eye chart, that will demonstrate once for all the possibility or impossibility of circumnavigating Greenland, or of sailing, or sledging, or walking to the Pole.

The worst dilemma would be that presented by a dead calm, and it is not improbable that around the Pole there may be a region of calms similar to that about the Equator. Then the feather-paddle or other locomotive device worked by man-power would be indispensable. Better data than we at present possess are needed in order to tell accurately what may thus be done. Putting various estimates one against the other, it appears likely that five miles an hour may be made. Taking turn and turn about, two or three aeronauts could thus travel fully 100 miles per day, and return from the Pole to the ship in less than five days.

Or take the improbable case of a circular wind blowing round the Pole, as some have imagined. This would simply demand the working of the paddle always northwards in going to the Pole, and always southwards in returning. The resultant would be a spiral course winding inwards in the first case, and outwards in the second. The northward or southward progress would be just the same as in a calm if the wind were truly concentric to the Pole. Some rough approximation to such currents may exist, and might be dealt with on this principle.

Let us now consider the third danger, that of the darkness. The seriousness of this may be inferred from the following description of the journey of the Nassau balloon, published at the time: “It seemed to the aeronauts as if they were cleaving their way through an interminable mass of black marble in which they were imbedded, and which, solid a few inches before them, seemed to soften as they approached in order to admit them still further within its cold and dusky enclosure. In this way they proceeded blindly, as it may well be called, until about 3.30 A.M., when in the midst of the impenetrable darkness and profound stillness an unusual explosion issued from the machine above, followed by a violent rustling of the silk, and all the signs which might be supposed to accompany the bursting of the balloon. The car was violently shaken. A second and a third explosion followed in quick succession. The danger seemed immediate, when suddenly the balloon recovered her usual form and stillness. These alarming symptoms seemed to have been produced by collapsing of the balloon under the diminished temperature of the upper regions after sunset, and the silk forming into folds under the netting. Now, when the guide rope informed the voyagers that the balloon was too near the earth, ballast was thrown out, and the balloon rising rapidly into a thinner air experienced a diminution of pressure, and consequent expansion of the gas.