The governing action is dependent upon the shape of the operating cam from X to Y. (In the case already dealt with, the lever L serves to operate both air and gas valves, and so one cam only is necessary; but in this instance the gas valve is operated by a separate cam, and a greater nicety of adjustment is obtainable.)

Fig. 26.

If the speed of the engine is sufficiently high, the arm L is thrust forward at such a rate that the weight W tends to lag behind, with the result that P is raised above the notch in B, as shown by the dotted lines in drawing. On the other hand, when the speed is too low, the arm L will not be thrust forward with so great a degree of suddenness, the weight W will have time to move with L, and the relative position of W and P to L will remain the same. Hence, in the first case, when a further forward movement is given to L by the cam, the pecker P is clear of B, and omits to open the gas valve V; in the second case, P engages with B, and the gas valve is held open during the time the portion of cam Y to Z is passing over the roller R on arm L.

The great drawback to some forms of governors is not that they fail to govern well when new, but that no provision is made to ensure them working steadily when a bit worn. The shape of the cam has everything to do with the regular working of this form of governor.

Supposing our cam was of the shape shown in fig. 27, i.e., the governing and opening portion all in one curve, it would cause the pecker to move both forward and in an upward direction at the same time, so that at the moment of engaging B, P might still be moving in an upward direction, which would cause uncertainty of action, especially if the tips of the engaging members were at all blunt through wear; and, in all probability, P would fly off B after partially opening the gas valve.

This behaviour is very undesirable, as the small quantity of gas so admitted to the cylinder is quite useless, and a sheer waste is incurred. With the governing arrangement shown in fig. 26, this trouble does not exist. The cam is so designed that the first rise from X to A determines whether or not the valve is to be opened; the curve from A to Y is struck from the centre of the side shaft; thus, during that portion of the revolution the arm L is stationary, and the pecker at the same instant takes up a definite position either in the notch in B or on top of it, and is ready to open the valve if the speed of the engine is such as to require an explosion, or simply to slide over the top of B, allowing the valve to remain closed. It is most interesting to observe the action of this governor; when an engine fitted with one is running very slowly, the three distinct movements of the pecker P may be clearly discerned as the respective portions of the cam pass over the small roller R.

Fig. 27.