Fig. 36.

Fig. 38.

Fig. 39.

By these operations it will be at once evident whether the cam is too large or too small. Supposing it is too small, we will obtain two sets of marks indicating the position of keyway, as shown in fig. 39, and it is obvious that we must give the lever less play by screwing up the set screws shown in fig. 11. The effect of this is to cause the valve to open earlier and close later than it would if the play were greater; as it would were the operating portion of cam larger. A minimum amount of play must always be allowed, however. When two sets of marks are obtained, the mean must be taken and the keyway cut as shown by the thick lines in fig. 39. The exhaust cam in larger engines is usually made with a swelling on the opening portion, as shown in fig. 40, so that the valve is very slightly opened some time before the crank has reached the position shown in fig. 41. Fig. 42 shows position of crank at the close of exhaust valve, and the two last-mentioned diagrams correspond with the two positions in which the exhaust cam is shown in fig. 34. The small lump on the back of exhaust cam, fig. 40, is only required on engines above 3 B.H.P. to relieve the compression on the compression stroke when starting up. By moving the roller R on valve lever longitudinally, so that it engages both parts of cam as they pass in front of it, the exhaust valve is held open during a small portion of the compression stroke, usually closing when the crank has reached the bottom centre.

Referring again to fig. 26, this gas or governor cam may be set out, and the keyway marked on the same principle as already described for the air and exhaust valves. An end view of the three cams keyed up on the side shaft is given in fig. 40A. In small engines it is convenient to have the air and exhaust cams made in one casting, when one key only will be required. On some engines, instead of employing a movable roller or valve lever, the exhaust cam is fitted on side shaft with a "feather"—i.e., a headless key—and the cam being capable of longitudinal movement, such movement being controlled by a small lever or handle, called the half-compression lever.

Fig. 40