If a watch rates slow in heat compared to cold it is necessary to shift screws in opposite pairs out toward the cut or free end of the rims; because when the metals expand the hairspring becomes weaker and produces a loss in time. During this period the free ends of the balance rims, carrying the transferred weight are forced toward the center and produce a gaining rate which compensates for the loss caused by the weakened spring.

As the metals contract in cold the free ends of the balance are drawn outward from their true form and the concentrated weight of these screws near the ends reduces the fast rate in cold and in principle works both ways in its action on the rate.

Should the circumstances be just opposite, or the rate be fast in heat compared to the rate in cold, it will be necessary to move the screws away from the free end of the rims. In doing this, less weight will be carried toward the center as the free ends curl inward and as a result, the rate in heat will become slower and the slow rate in cold will be reduced.

[3.]Composition of and Distortions of Compensation Balances.

Compensation balances are generally made of one layer of brass and one of steel, with the brass on the outside consisting of about three-fifths of the total thickness and the steel on the inside consisting of about two-fifths. These metals are firmly soldered together and the distortions in changes of temperature are as follows. In heat both metals expand, which infers that the rims become longer as well as wider and thicker. Brass expands more than steel and because of its attachment to the steel it cannot continue to lengthen in its true circular form, due to the fact that the steel does not become enough longer to maintain the true curve, and the result is that the free ends of the rims are forced inward.

In cold the brass, contracting more than the steel, pulls the rim outward at the free end which is just in reverse of the operations in heat.

The end of the rim which is attached to the balance arm always moves in the opposite direction from the free end, or outward from the center of balance, when the free end moves in, and inward when the free end moves out. In comparison, however, this movement is negligible as will be noted later in the results obtained in moving screws in that direction.

[4.]Tests and Experiments.

It is generally understood that the purpose of the compensation balance is to act in opposition to the error caused principally by the hairspring. The steel hairspring having no compensating qualities, either grows stronger or weaker with changes in temperature. When it becomes longer, wider and thicker in heat, experiments seem to prove that the increased width and thickness are not in proportion to the increased length, for if they were, the spring would actually be stronger; while timing proves that it is weaker because of the loss in time. In cold the shortening factor seems to dominate because of a gain in time.

In a series of tests with steel springs on uncut steel brass balances, the temperature error in the extremes of 40 degrees and 90 degrees Fahrenheit was found to be from eighty to one hundred and sixty seconds. With the same balances cut the error was reduced from seventy to one hundred and thirty seconds in each instance, without any correction of the balance screws.