Just as ladling is nearly always preliminary to rolling, so gathering is usually the preliminary to some blowing process, although the blowing is often combined with and sometimes replaced by the mechanical pressing of the glass. Where the glass is to be blown, the gathering is always made on a glass-maker’s pipe. This is an iron tube from 4 to 6 ft. long, provided at one end with a wooden casing to serve as a handle, and with a suitably arranged mouthpiece for blowing. The shape of the lower or “butt” end of the pipe depends upon the character and size of the objects to be blown; for small articles the pipe must be narrow and light, but for heavy sheet-glass the butt of the pipe is extended into a conical mass whose base is from 2 to 3 in. in diameter. The bore of the pipe at both ends also depends upon the class of work for which it is intended. The first stage of all blowing processes consists in the formation of a hollow sphere by blowing into the pipe, the pressure of the breath being as a rule sufficient to cause the gradual distension of the hot mass of glass. From this rudimentary hollow sphere the various shapes of blown articles are then evolved by a series of manipulations which vary very widely in different branches of manufacture. They generally consist, however, in gradually changing the shape of the mass of glass by the pressure either of hand tools or of specially prepared moulds or blocks against which the glass is held or turned, either with or without simultaneous blowing into the pipe. The extent to which the aid of such moulds and blocks is invoked varies continuously from the production of the hand-made vase or glass to the moulded bottle; in the former, practically only hand tools, whose shape bears no direct resemblance to that of the finished article, are employed, while in the latter the elongated hollow mass of glass is placed inside a mould, and internal air-pressure is used to press the glass into contact with the mould from which the shape of the finished bottle is thus directly derived.

The art of the blower further takes the fullest advantages of the peculiar physical properties of glass while in the heated viscous condition, the material being made to flow under the action of gravity and centrifugal forces, as well as under the pressure of the breath, the glass being held aloft, twirled or swung about to ensure the production of the various shapes required. For the great majority of such purposes the unaided manipulations of the operator are sufficient, but various mechanical aids are used to facilitate the more laborious stages of the work, while for the simpler forms that are required in very great numbers, such as bottles, the whole of the operations are now carried out by automatic machines. Of the more usual mechanical aids at the disposal of the glass-blower, we have already mentioned hand-tools, blocks, and moulds of various kinds. Next in importance to these is the use of compressed air for blowing large or heavy articles; the pressure available by the human breath is very limited, and the volume of air that can be thus delivered is not very large, while the constant use of the lungs for such a purpose is trying for the workman. In many works, therefore, air under pressure is supplied to the benches or stages where the blowing is done, and the blowers’ pipes can be coupled to this air-supply by means of flexible connections when required. The principal difficulty lies in the correct regulation of the air-pressure for each special purpose; but this difficulty has been overcome by the use of delicate valves under the control of each blower, who can thus regulate the pressure to his own exact requirements. Such a system, of course, requires some little practice on the part of the men using it, but when they have become accustomed to the working of the plant the results achieved are decidedly better and more regular than those obtained by mouth blowing. Besides the use of compressed air supplied in the way just indicated, several other devices are in use to aid the blower in producing the requisite pressure in the interior of the hollow bodies he is producing. The simplest of all these consists in utilising the expansive force of the air enclosed in the hollow body when that body is exposed to heat. Thus, for instance, in blowing a cylinder of sheet-glass, if the blower holds his thumb over the aperture of his pipe, and brings the closed end of the cylinder near the hot “blowing hole,” the heat which softens that end of the glass will also act upon the enclosed air, and will very rapidly produce such an expansive effect as to burst open the softened end of the cylinder, and this means of opening the closed ends of the cylinder is frequently employed in practice. It is, of course, obvious that any other expansive fluid might be employed in a similar manner, and in some blowing processes it has long been the practice to introduce a small quantity of water into the interior of the hollow body, when the rapid expansion of the steam produced thereby is utilised for the purpose of generating the requisite internal pressure. This use of the expansive force of steam generated by the heat of the hot glass body has received great development at the hands of Sievert in Germany, whose process is described in [Chapter VII.]

Whatever mechanical aids are employed to facilitate the various stages of the process, all glass blowing involves a series of operations requiring considerable skill, while the whole manner of dealing with the glass is essentially extravagant of material, except perhaps in the production of bottles or flasks having narrow mouths. The reason for this latter statement lies in the fact that by blowing it is only possible to produce closed or nearly closed hollow bodies or vessels; thus a blown wine-glass or tumbler is formed with a hood or dome closing in the open top of the glass, and this hood or dome has subsequently to be removed by subsidiary processes, such as cutting off by the aid of strong local heat or by grinding, and the cut edge has to be provided with a smooth finish. In the case of comparatively small articles like glasses the loss involved from this cause is not so very great, but were large flat bowls or dishes to be produced by blowing, the loss in the dome or covering would be very serious. This difficulty is entirely avoided by the process of pressing glass. We have already indicated the manner in which moulds are used for the production of the desired shape in the case of bottles, etc., but in these cases, where the final object is to be a hollow vessel, the glass is readily forced into contact with the mould by means of internal air—or steam—pressure; in the process to which we are now referring, however, the hot glass is forced into contact with the external mould by means of an internal plunger which is forced downward with considerable force. By this means, flat or shallow bodies can be produced without the preliminary formation of a completely closed vessel, while it is obvious that by the use of suitable moulds, complicated and elaborate shapes can be produced. It is true, of course, that pressed articles do not show the same smooth and brilliant surface which is characteristic of the fire-polish of blown articles, while the facility with which elaborate surface ornamentation can be applied by this process has not tended to artistic refinement in design, but the great majority of cheap and useful glass articles of domestic use have been made available by the development of the pressing industry.

In the ordinary course, pressed glass is produced direct from the molten material, which is introduced into the presses either by gathering or by means of ladles, but for some special purposes glass is brought into its final shape by mechanical pressure after having first been allowed to solidify and having then been specially re-heated to undergo the pressing or moulding process. This is principally done in the case of the best kinds of optical glass, where the molten glass is first allowed to cool in the actual crucible and is then broken up into lumps of a suitable size, from which the more defective portions can be rejected, the more perfect portions only being heated up again in special kilns and then forced to take the desired shape by being pressed—sometimes with hand tools only and sometimes by the aid of powerful presses—into moulds of the required shape. Small lenses, however, for which the requirements of quality are not so high are sometimes pressed direct from small gatherings taken from the molten glass in the crucible.


CHAPTER VII.
BOTTLE GLASS.

Although bottles are in some respects the cheapest and crudest products that are manufactured of glass, their uses are so innumerable and their numbers so enormous that their production constitutes a most important branch of the industry.

In the choice of raw materials for the production of ordinary bottles cheapness is necessarily the first consideration. Natural minerals, bye-products of other industries, and the crudest chemicals are utilised so long as it is possible by compounding these ingredients in suitable proportions to obtain a glass whose composition meets the somewhat crude requirements which bottles are expected to meet. The most essential of these requirements are that the bottles shall be strong enough to resist the internal pressure which may come upon them when used for the storage of fermented or effervescent liquors as well as the shock of ordinary use, while the glass itself must possess sufficient chemical resistance to remain unattacked by the more or less corrosive liquids which it is called upon to contain. Further, from the point of view of the bottle manufacturer it is desirable that the glass shall be readily fusible, easily worked, and easily annealed. In other branches of glass manufacture increased fusibility is often attained by increasing the alkali contents of the glass, but in bottle making this is inadmissible, both on account of the prohibitive cost of alkali and because an increased alkali content renders the glass more liable to chemical attack. On the other hand, in many varieties of bottle the colour of the glass is nearly, or quite, immaterial so that the introduction of relatively large proportions of iron oxide is permissible. This substance acts as a flux and assists in the production of a fusible, workable glass containing little alkali. Such alkali as bottle glass does contain is frequently derived from felspathic minerals, which generally also contain considerable proportions of iron. The use of these minerals also introduces notable proportions of alumina into the glass. In certain classes of bottles, notably those used for special wines, certain shades of colour are required—the well-known “Hock bottle” colour being an example. The presence of iron in the glass tends to the production of a green or greenish-yellow colour deepening to a black opacity if the quantity of iron be high. The lighter shades of this green tint may be “neutralised” by the introduction of manganese into the glass, the resulting colours ranging from light amber to purple; nickel oxide is also sometimes used as a colouring material in these glasses.

In the production of ordinary bottles the continuous tank furnace has now entirely superseded the old pot furnaces, the character of the product being in this case particularly suited to this process of production. The modern bottle-glass tank is generally an oblong basin having one semi-circular end. The flame is often of the “horse-shoe” type, the gases both entering and leaving the furnace at the flat or charging end of the furnace. The raw materials are thrown into the furnace at the square end of the tank, and the glass flows uninterruptedly down the furnace to the colder semi-circular end where the working holes are situated. At these points fire-clay rings are kept floating on the glass, and from within these the gatherer takes his gathering, the rings serving to retain the grosser impurities carried down by the glass. The producing power of such a furnace, even when the bottles are blown by hand, is very considerable; a furnace having ten working holes and containing normally about 85 tons of molten glass will yield some four million bottles per annum, and furnaces of considerably larger capacity are in use.