The “ports” or apertures by which pre-heated gas and air enter the furnace chamber differ very widely in various furnaces. In some cases the gas and air are allowed to meet in a small combustion chamber just before entering the furnace itself, while in other cases the gas and air enter the furnace by entirely separate openings, only meeting in the furnace chamber. The latter arrangement tends to the formation of a highly reducing flame, which is advantageous for the reduction of salt-cake, but is by no means economical as regards fuel consumption. On the other hand, by producing a perfect mixing of the entering gas and air in suitable proportions, the other type of ports can be made to give almost any kind of flame desired, although their tendency is to form a more oxidising atmosphere within the furnace. The latter type of ports, although widely varied in detail, are now almost universally adopted in sheet tank furnaces.
All modern tank furnaces work on the principle of the recovery of heat from the heated products of combustion as they leave the furnace, and the return of this heat to the furnace by utilising it to pre-heat the incoming gas and air; but the means employed to effect the application of this “regenerative” principle differ considerably in various types of plant. Perhaps the most widely-used form of furnace is the direct descendant of the original Siemens regenerative furnace, in which four regenerator chambers are provided with means for reversing the flow of gas and air in such a way that each pair of chambers serves alternately to absorb the heat of the outgoing gases and subsequently to return this heat to the incoming air that passes through one, and the incoming gas that passes through the other of these chambers. In these furnaces, the regenerator chambers themselves are generally placed underneath the melting furnace, and they are built of fire-brick and filled with loosely-stacked fire-bricks, whose function it is to absorb or deliver the heat. In the most modern type of furnaces of this class, the gas-regenerators are omitted entirely, the air only being pre-heated by means of regenerators, while the gas enters the furnace direct from the producer, thus carrying with it the heat generated in the producer during the gasification of the fuel. While this arrangement is undoubtedly economical, it has the serious disadvantage, especially in the manufacture of sheet-glass, that the gas, rushing direct from the producer into the furnace, carries with it a great deal of dust and ash, which it has no opportunity of depositing, as in the older types of furnace, in long flues.
The most serious disadvantages of the ordinary types of regenerative furnaces are due to the considerable dimensions of the regenerative apparatus, necessitating a costly form of construction and occupying a large space, while the necessity of periodically reversing the valves so as to secure the alternation in the flow of outgoing and incoming gases requires special attention on the part of the men engaged in operating the furnace, as well as the construction and maintenance of valves under conditions of heat and dirt that are not favourable to the life of mechanical appliances. It is claimed that all these disadvantages are overcome to a considerable extent in one or other of the various forms of furnace known as “recuperative.” In these furnaces there is no alternation of flow, and the regenerator chambers are replaced by the “recuperators.” These consist of a large number of small flues or pipes passing through a built-up mass of fire-brick in two directions at right-angles to one another; through the pipes running in one direction the waste gases pass out to the chimney, while the incoming gas and air pass through the other set of pipes. A transference of heat between the two currents of gas takes place by the conductivity of the fire-brick, and thus the outgoing gases are continuously cooled while the ingoing gases are heated—the transference of heat being somewhat similar to that which takes place in the surface condenser of a steam engine. Theoretically this is a much simpler arrangement than that of separate regenerator chambers, and to some extent it is found preferable in practice, but there are certain disadvantages associated with the system which arise principally from the peculiar nature of the material—fire-brick—of which the recuperators must be constructed. In the first place, the heat-conductivity of fire-brick is not very high, so that, in order to secure efficiency, the recuperators must be large, and while the individual pipes must be of small diameter, their area as a whole must be large enough to allow the gases to pass through somewhat slowly. Next, owing to the tendency of fire-brick to warp, shrink and crack under the prolonged effects of high temperatures, it becomes difficult to prevent leakage of gases from one set of pipes into the other. If this occurs to a moderate extent its only effect will be to allow some of the combustible gas to pass direct to the chimney, and at the same time a dilution of the gases entering the furnace by an addition of products of combustion from the waste-gas flues. This, of course, will materially reduce the efficiency of the furnace and require a higher fuel consumption if the temperature of the furnace is to be maintained at its proper level. If, however, the leakage should become more serious, a disastrous explosion might easily result, particularly if the nature of the leakage were such as to allow the incoming gas and air to mix in the flues. It follows from these considerations that, although the recuperative furnace is somewhat simpler and cheaper to construct, it requires, if anything, more careful maintenance than the older forms of regenerative furnace.
Tank furnaces for the production of sheet-glass in this country are generally worked from early on Monday morning until late on Saturday night, glass-blowing operations being suspended during Sunday, although the heat of the furnace must be maintained. On the Continent, and especially in Belgium, the work in connection with these furnaces goes on without any intermission on Sunday—a difference which, however desirable the English practice may be, has the effect of handicapping the output of a British furnace of equal capacity by about 10 per cent. without materially lessening the working cost.
The process of blowing sheet-glass in an English glassworks is generally carried out by groups of three workmen, viz., a “pipe-warmer,” a “gatherer” and a “blower,” although the precise division of the work varies according to circumstances. The pipe-warmer’s work consists in the first place in fetching the blowing-pipe from a small subsidiary furnace in which he has previously placed it for the purpose of warming up the thick “nose” end upon which the glass is subsequently gathered. The sheet-blower’s pipe itself is an iron tube about 4 ft. 6 in. long, provided at the one end with a wooden sleeve or handle, and a mouthpiece, while the other end is thickened up into a substantial cone, having a round end. Before introducing the pipe into the opening of the tank furnace, the pipe-warmer must see that the hot end of the pipe is free from scale or dirt and must test, by blowing through it, whether the pipe is free from internal obstructions. He then places the butt of the pipe in the opening of the furnace and allows it to acquire as nearly as possible the temperature of the molten glass. When this is the case the pipe is either handed on to the gatherer, or the pipe-warmer, who is usually only a youth, may take the process one step further before handing it on to the more highly skilled workman. This next step consists in taking up the first gathering of glass on the pipe. For this purpose the hot nose of the pipe is dipped into the molten glass, turned slowly round once or twice and then removed, the thread of viscous glass that comes up with the pipe being cut off against the fire-clay ring that floats in the glass in front of the working opening. A small quantity of glass is thus left adhering to the nose of the pipe, and this is now allowed to cool down until it is fairly stiff, the whole pipe being meanwhile rotated so as to keep this first gathering nicely rounded, while a slight application of air-pressure, by blowing down the pipe, forms a very small hollow space in the mass of glass and secures the freedom of the opening of the pipe. When the glass forming the first gathering has cooled sufficiently, the gatherer proceeds to take up the second gathering upon it. The pipe is again introduced into the furnace and gradually dipped into the molten glass, but this must be done with great care so as to avoid the inclusion of air-bells between the glass already on the pipe and the new layer of hotter glass that is now taken up. This freedom from air-bells is secured by a skilful gatherer by a gradual rotation of the pipe as it is lowered into the glass, thus allowing the two layers of glass to come into contact with a sort of rolling motion that allows the air time to escape. When completely immersed, the pipe is rotated a few times and is then withdrawn and the “thread” again cut off. The mass of glass on the end of the pipe is now considerably larger than before and requires more careful manipulation to cause it to retain the proper, nearly spherical, shape. During the cooling process which now follows the pipe is laid across an iron trough, kept brimful of water; this serves to cool the pipe itself, and also allows the pipe to be readily rotated backwards and forwards by rolling it a little way along the trough. When the whole mass of glass has again cooled sufficiently to be manipulated without risk of rapid deformation, a third gathering of glass is taken up, in precisely the same manner as that already described for the second gathering, and if the quantity of glass required is large, or the glass itself is so hot and fluid that only a comparatively small weight adheres at each time of gathering, the process may be repeated a fourth or even a fifth time, but as the weight of pipe and adhering glass increases with each gathering, each step becomes more laborious, while the hot glass, being now held on a much larger sphere, tends to flow off more readily, so that greater skill is required to avoid “losing” the gathering.
The care and skill with which these operations of gathering are carried out determine, to a large extent, the quality of the resulting sheet of glass; any want of regularity in the shape of the gathering leads inevitably to variations of thickness in different parts of the sheet, while careless gathering will introduce bubbles or “blisters” and other markings. During the intermediate cooling stages the glass must be protected from dust and dirt of all kinds, since minute specks falling upon the hot glass give rise to an evolution of minute gas bubbles which become painfully evident in the sorting room.
When the last gathering has been taken up and the mass cooled so far as to allow of its being carried about without fear of loss, the glass forms an approximately spherical mass, with the nose-end of the pipe at or near the centre of the sphere. The next stages of the process consist in the preliminary shaping of this mass in such a way as to bring the bulk of the glass beyond the end of the pipe, and then in forming just beyond the end of the pipe a widened shoulder of thinner and therefore colder glass, of the diameter required for the cylinder into which the glass is to be blown. This is done by bringing the glass into the successive shapes shown in [Fig. 12], the forming of the glass being effected by the aid of specially shaped blocks and other shaping instruments in which the glass is turned and blown. The final shape attained at this stage is a squat cylinder containing the bulk of the glass at its lower end, and connected to the pipe by the thinner and colder neck and shoulder already mentioned.
Fig. 12.—Early stages in the formation of cylinders for sheet glass.
At this point of the process the pipe with its adherent glass is handed over to the blower proper. This operator works on a special stage erected in front of small furnaces, called “blowing holes,” although in some works these are dispensed with, and the stages are erected in front of the melting furnace itself. The sheet-blower’s stage is simply a platform placed over or at the side of a suitable excavation which gives the blower the necessary space to swing the pipe and cylinder freely at arm’s length. The blowing process itself involves very little actual blowing, but depends rather upon the action of gravitation and on centrifugal effects for the formation of the large, elongated cylinder from the squat cylinder with which the blower commences. The process consists in holding the thick, lower end of the cylinder in the heating-furnace, and when sufficiently hot, withdrawing it and swinging the pipe with a pendulum movement in the blower’s pit. The cylinder thus elongates itself under its own weight, and any tendency to collapse is counteracted by the application of air-pressure by the mouth, the pipe being also, at times, rotated rapidly about its own axis. The re-heating of the lower end of the cylinder is repeated several times, until finally the glass has assumed the form of a cylinder of equal thickness all over, but closed with a rounded dome at the lower end ([Fig. 13]). This rounded end is now opened. In the case of fairly thin and light cylinders this is done by holding the thumb over the mouthpiece of the pipe in such a way as to make an air-tight seal, and then heating the end of the cylinder in the blowing-hole. The heat both softens the glass at the end and at the same time causes considerable expansion of the air enclosed in the cylinder, with the result that the end of the cylinder is burst open. After a little further heating, during which the glass at the end of the cylinder becomes very soft, and takes a wavy, curly shape, the blower withdraws the cylinder from the furnace, and holding it vertically downwards in his pit, spins it rapidly about its longitudinal axis. The soft glass at the lower end immediately opens out under the centrifugal action, and the blower increases the speed of rotation until the soft glass has opened out far enough to form a true continuation of the rest of the cylinder, and in this position it is allowed to solidify. With thick, heavy cylinders, the first opening of the end is done in a different way. A small quantity of hot glass is taken up by an assistant on an iron rod, and is laid upon the centre of the closed end of the cylinder. The heat of this mass of hot glass softens the glass of the cylinder, and the operator, with the aid of a special pair of shears, cuts out a small circle of this softened glass, thus opening the end of the cylinder. The final operation of straightening out the opened end is carried out in the same way as described above for lighter cylinders.