Although most usually applied to copper-ruby glass, the flashing process is often used with other colours also. Coloured glass of this kind is at once recognised when looked at through the edges. Thus examined the glass simply shows the greenish tint of ordinary sheet-glass which constitutes practically the entire thickness of the sheet. In the same way, if such “flashed” glass be cut or etched in such a way that the layer of coloured glass is removed in places, the resulting pattern appears in white on the coloured ground—a feature which is utilised for certain decorative purposes. The flashing process just described, it should be noted, is applicable to any form of glass-ware which is blown from a gathering, and the coloured layer can be applied either upon the inside or outside of any object thus produced.
In addition to the palette of colours which the glass-maker is able to supply, the artist in stained glass has a further range of colours at his disposal in the form of stains and transparent colours which can be applied to the surface of glass and developed and rendered more or less permanent by being properly “fired.” The colours produced in this way are also, in one sense, coloured glasses, or rather glazes, whose raw materials are put upon the glass by the brush of the painter, and only subsequently caused to combine and melt by suitable heating. The degree of heat applicable under these circumstances is, however, very limited by the necessity of avoiding any great softening of the substratum of glass, while many of the colours themselves are composed of materials which could not resist very high temperatures. The fluxes used in the composition of these colours must for this reason be of a very fusible kind, with the inevitable result of a greatly reduced chemical stability as compared with the glass itself.
The whole subject of painting on glass, even from the purely technical as apart from the æsthetic point of view, is a very wide one, and lies outside the scope of the present volume. Only one further technical point in connection with glass-painting and stained glass work will therefore be touched upon here. This is an example of the fact that the more technically “perfect” modern product is not always preferable for special purposes which have been well served by older and far less “perfect” products. The production of technically excellent coloured glass in modern times was, somewhat surprisingly at first, accompanied by a very marked decline in the artistic beauty of stained glass windows produced with this modern material; the ancient art of stained glass was, therefore, for a time regarded as a “lost art,” and glass-makers were blamed for being unable to produce the brilliant and beautiful tints which had been formerly available. More careful study, however, revealed the fact that while the actual colour of modern glass was at least as brilliant and varied as that of ancient glass, the difference lay in the fact that the modern glass was practically entirely free from such imperfections as air-bubbles, striæ, and other defects which improved appliances and methods had enabled the glass-maker to eliminate from his products. Finding the beauty of his wares greatly improved by this increased purity of the glass in the case of window glass and table ware, it was natural for the glass-maker to endeavour to produce the same “improvement” in the coloured glasses intended for artistic purposes and, indeed, it is more than likely that the stained-glass workers themselves pressed this line of improvement upon him by a demand for “better” glass. It turned out, however, on close examination, that this very perfection of modern glass rendered it less adapted for these artistic purposes. A perfect piece of glass, having smooth surfaces and no internal regularities, allows the rays of light falling upon it to pass through undeflected in direction, and merely changed in colour, according to the tint of the glass in question. On looking at the glass, external objects can be quite clearly seen, and much of the interest and mystery of the glass itself is lost. On the other hand, when falling upon a piece of glass having an irregular surface, and containing all manner of irregularities such as striæ, air-bells, and even pieces of enclosed solid matter, the light is scattered, refracted, and deflected into all manner of directions until it almost appears to emanate from the body of the glass itself, which thus appears almost to shine with an internal light of its own; the eye can hardly perceive the presence of external objects, and the whole window appears as a brilliant self-luminous object.
Once their attention had been drawn to these facts, modern glass-makers endeavoured, and with much success, to reproduce the desirable qualities of the ancient glass, while still availing themselves of modern methods to produce more stable glasses and a wider range of colours. The irregular surface of the old glass is imitated by using rolled or “muffed” instead of ordinary blown glass, while the internal texture is rendered non-homogeneous by the deliberate introduction of solid and gaseous impurities and by manipulations so arranged as to leave the glass in layers of different density, which appear in the finished glass as “striæ.” As a consequence, it is probably not too much to claim that the modern workers in coloured glass have materials at their disposal which are at least as suitable for the purpose as those that were available in the best days of the ancient art.
Some reference has already been made to the technical uses of coloured glass, but one or two further points in that connection remain to be discussed. For such technical purposes as railway and marine signals, the consensus of practical experience has decided in favour of certain colours of glass, such as red and green of particular tints. On the other hand, for various purposes in connection with photography, the glass-maker does not appear to have been able to meet the new requirements, with the result that flimsy and otherwise unsatisfactory screens made of gelatine or celluloid stained with organic dyes are employed in place of coloured glass in such cases, for example, as the covering of lamps for use in photographers’ “dark” rooms, and for the light-filters used for orthochromatic and tri-chromatic photography. In all these cases it is necessary to use a transparent coloured medium which transmits only light of a certain very definite range of wave-lengths, and there is no doubt that for the glass-maker, who is confined to the use of a number of elementary bodies for his colouring media, it is by no means easy to comply with these requirements of exact transmission and absorption. On the other hand, the field of available coloured glasses has not been fully explored from this point of view, the only extensive work on the subject having been done in connection with the Jena firm of Schott, who have put upon the market a series of coloured glasses of accurately-known absorbing power. There is, however, little doubt that a much greater extension of this field is possible, and that it will be opened up by a glass-maker who undertakes the exhaustive study of coloured glasses from this point of view, although it must be admitted that there is considerable doubt whether the results obtainable by the aid of aniline and other dyes as applied to gelatine can ever be equalled by coloured glasses.
CHAPTER XII.
OPTICAL GLASS.
Optical glass differs so widely from all other varieties of glass that its manufacture may almost be regarded as a separate industry, to which, indeed, a separate volume could well be devoted. In the present chapter we propose to give an outline of the most important properties of optical glass, and in the next chapter to describe the more important features of the processes used in its production.
The properties which affect the value of optical glass may roughly be divided into two groups. The first group comprises the specifically “optical” properties—i.e., those directly influencing the behaviour of light in its passage through the glass, while the second group covers those properties of a more general nature, which are of special importance in glass that is to be used for optical purposes.