The various forms of energies the aggregate of which is comprehended in physics, have very different special characters. A systematic investigation has not yet been made of the characters of manifoldness by which, for example, work is distinguished from heat, electrical energy from kinetic energy, etc., nor of what are the essential properties peculiar to each individual energy. We feel certain that differences do exist, for otherwise the energies could not be distinguished, and we feel certain that these differences are very important, for doubt seldom arises as to the kind of energy to which a certain phenomenon is to be assigned. But just as we have no systematic table of the elementary concepts, so we are still without a systematic natural history of the forms of energy in which the peculiarities of every species are characterized, and in which the entire material is so arranged according to these characteristics that we can take a general survey of it.

As regards heat energy, its foremost and most striking characteristic is its physiological effect. In our skin there are organs for the perception of heat as well as of cold, that is, for temperatures above and below the temperature of the skin. However, the temperature that these organs can bear without injury to themselves is of a very small range, beyond which physical apparatuses of all kinds must be used, such as "thermometers."

Heat is the simplest kind of energy from the point of view of manifoldness. Every heat quantity is marked by a temperature, just as a kinetic energy is marked by velocity. But while a velocity is determined in space so that velocities of equal magnitude have in addition a threefold infinite manifoldness in reference to direction, a temperature is characterized completely and unambiguously by a simple number, the degree of temperature. Two temperatures of equal degree can in no wise be distinguished, since temperature possesses no other possible manifoldness than degree.

The same property is found in heat energy itself. In heat energy we measure the quantity of energy itself and call it the heat quantity, while in some of the other kinds of energy, only the factors into which they can be divided are measured, and no habitual conception of the energy itself is developed. A heat quantity is likewise fully indicated by its measure number.

That heat is an energy, that is, that it is developed in equal quantities from other kinds of energy, and can change back again into them, is a discovery which, despite its fundamental and general character, was not made before the forties of the nineteenth century. As often happens in cases of important scientific advances, the same idea came simultaneously to a number of investigators. The first to grasp and fully comprehend this idea was Julius Robert Mayer of Heilbronn, who published his results in 1842. Mayer not only showed that the imperfect machines ([p. 134]), which limit the validity of the law of the conservation of work, owe this peculiarity to the fact that they transform a part of the work into heat, and that when we take account of this part, the law of conservation holds perfectly good, but he also calculated, with extraordinary acumen, the mechanical equivalent of heat from the then existing data of physics. That is to say, he determined how many units of heat (in the measure then in use) correspond to a unit of work (in its specific measure) in the change from one to the other, and back. And this fundamental knowledge of the existence of a quantitatively unchangeable substance, arising from work, and capable of being transformed into it, Mayer did not limit in its application merely to heat. He was the first to construct a table, which he made as complete as possible, of all the forms of energy then known, and to assert and prove the possibility of their reciprocal change into each other.

In view of this relation of the quantitative equivalent of the various forms of energy when transformed into one another, an attempt is being made at present to measure them all with the same unit. That is, some easily obtained quantity of energy is arbitrarily chosen as a unit and it is determined that in every other form of energy the unit shall be equal to the quantity obtained from that unit on its transformation into the energy in question. For formal reasons the kinetic energy of a mass of two grams which moves with the velocity of one centimeter in a second has been chosen as the unit. It is called erg, an abbreviation of energy. The amount is very small, and for technical reasons 1010 times greater unit is used. To raise the temperature of a gram of water one degree a quantity of energy equal to 41,830,000 ergs is required.

50. The Second Fundamental Principle.

Another fundamental discovery has been made in connection with the heat form of energy, which, like the law of conservation, relates to all forms of energy, but has found its first and most important application in heat. While the law of conservation answers the question, how much of the new form of energy is developed if a given quantity of energy changes, but gives no clue as to when such a change occurs, this second law asserts the condition under which such changes arise, and is therefore called the second fundamental principle.

The discovery of this law antedates Mayer's discovery of the law of conservation by about twenty years, and was made by a French military engineer, Sadi Carnot, who died soon afterward without having lived to see the recognition his great work obtained. Carnot asked himself the question, Upon what does the action of the steam engine, which had just then come into use, depend? This led him first to the more general question of the action of heat engines in general. He found that no heat engine could work unless the heat dropped from a higher to a lower temperature, just as no water wheel can work unless the water flows from a higher to a lower level, and he determined the conditions which an ideal heat engine must fulfil, that is, a machine in which the greatest possible value in work is obtained from heat. However, an ideal machine of this nature can be constructed in very different ways, and Carnot's discovery consists in the recognition of the fact that the quantity of work obtained from the heat unit does not at all depend upon the peculiar construction of the ideal machine, but is determined solely by the temperature between which the heat transition takes place. This follows from the following considerations:

In the first place an ideal engine must be reversible, that is, it must be capable of working both ways, changing heat into work and work back into heat. Now, if we have two ideal engines between the same temperatures, and if we assume that engine A produces more work from the same quantity of heat than engine B, then let A move one way and let B move the other way with the work obtained from A. Since B produces less work from a given amount of heat, hence more heat from an equal amount of work, there will in the end be more heat at the higher temperature than was originally there. But experience teaches that there is no means in nature by which heat in the absence of concomitant change could be caused to rise to a higher temperature. Therefore an engine so constructed as to produce this result is impossible, And B cannot be of such a nature as to produce less work from the same quantity of heat than A.