He planned and executed one experiment which he supposed was conclusive. In introducing it he said: "The opponents of spontaneous generation assert that the germs of microscopic organisms exist in the air, which transports them to a distance. What, then, will these opponents say if I succeed in introducing the generation of living organisms, while substituting artificial air for that of the atmosphere?"
He filled a flask with boiling water and sealed it with great care. This he inverted over a bath of mercury, thrusting the neck of the bottle into the mercury. When the water was cooled, he opened the neck of the bottle, still under the mercury, and connected it with a chemical retort containing the constituents for the liberation of oxygen. By heating the retort, oxygen was driven off from the chemical salts contained in it, and being a gas, the oxygen passed through the connecting tube and bubbled up through the water of the bottle, accumulating at the upper surface, and by pressure forcing water out of the bottle. After the bottle was about half filled with oxygen imprisoned above the water, Pouchet took a pinch of hay that had been heated to a high temperature in an oven, and with a pair of sterilized forceps pushed it underneath the mercury and into the mouth of the bottle, where the hay floated into the water and distributed itself.
He thus produced a hay infusion in contact with pure oxygen, and after a few days this hay infusion was seen to be cloudy and turbid. It was, in fact, swarming with micro-organisms. Pouchet pointed with triumphant spirit to the apparently rigorous way in which his experiment had been carried on: "Where," said he, "does this life come from? It can not come from the water which had been boiled, destroying all living germs that may have existed in it. It can not come from the oxygen which was produced at the temperature of incandescence. It can not have been carried in the hay, which had been heated for a long period before being introduced into the water." He declared that this life was, therefore, of spontaneous origin.
The controversy now revived, and waxed warm under the insistence of Pouchet and his adherents. Finally the Academy of Sciences, in the hope of bringing it to a conclusion, appointed a committee to decide upon conflicting claims.
Pasteur.—Pasteur had entered into the investigation of the subject about 1860, and, with wonderful skill and acumen, was removing all possible grounds for the conclusions of Pouchet and his followers. In 1864, before a brilliant audience at the Sorbonne, he repeated the experiment outlined above and showed the source of error. In a darkened room he directed a bright beam of light upon the apparatus, and his auditors could see in the intense illumination that the surface of the mercury was covered with dust particles. Pasteur then showed that when a body was plunged beneath the mercury, some of these surface granules were carried with it. In this striking manner Pasteur demonstrated that particles from the outside had been introduced into the bottle of water by Pouchet. This, however, is probably not the only source of the organisms which were developed in Pouchet's infusions. It is now known that a hay infusion is very difficult to sterilize by heat, and it is altogether likely that the infusions used by Pouchet were not completely sterilized.
The investigation of the question requires more critical methods than was at first supposed, and more factors enter into its solution than were realized by Spallanzani and Schwann.
Pasteur demonstrated that the floating particles of the air contained living germs, by catching them in the meshes of gun cotton, and then dissolving the cotton with ether and examining the residue. He also showed that sterilized organic fluids could be protected by a plug of cotton sufficiently porous to admit of exchange of air, but matted closely enough to entangle the floating particles. He showed also that many of the minute organisms do not require free oxygen for their life processes, but are able to take the oxygen by chemical decomposition which they themselves produce from the nutrient fluids.
Jeffries Wyman, of Harvard College, demonstrated that some germs are so resistant to heat that they retain their vitality after several hours of boiling. This fact probably accounts for the difference in the results that have been obtained by experimenters. The germs in a resting-stage are surrounded by a thick protective coat of cellulose, which becomes softened and broken when they germinate. On this account more recent experimenters have adopted a method of discontinuous heating of the nutrient fluid that is being tested. The fluids are boiled at intervals, so that the unusually resistant germs are killed after the coating has been rendered soft, and when they are about to germinate.
After the brilliant researches of Pasteur, the question of spontaneous germination was once again regarded as having been answered in the negative; and so it is regarded to-day by the scientific world. Nevertheless, attempts have been made from time to time, as by Bastian, of England, in 1872, to revive it on the old lines.