"That he was in comfortable, if not affluent, circumstances is clear from the character of his writings; that he was not troubled by any very anxious and responsible duties is certain from the continuity of his scientific work; that he could secure the services of persons of influence is discernible from the circumstances that, in 1673, De Graaf sent his first paper to the Royal Society of London; that in 1680 the same society admitted him as fellow; that the directors of the East India Company sent him specimens of natural history, and that, in 1698, Peter the Great paid him a call to inspect his microscopes and their revelations."

Leeuwenhoek seems to have been fascinated by the marvels of the microscopic world, but the extent and quality of his work lifted him above the level of the dilettante. He was not, like Malpighi and Swammerdam, a skilled dissector, but turned his microscope in all directions; to the mineral as well as to the vegetable and animal kingdoms. Just when he began to use the microscope is not known; his first publication in reference to microscopic objects did not appear till 1673, when he was forty-one years old.

His Microscopes.—He gave good descriptions and drawings of his instruments, and those still in existence have been described by Carpenter and others, and in consequence we have a very good idea of his working equipment. During his lifetime he sent as a present to the Royal Society of London twenty-six microscopes, each provided with an object to examine. Unfortunately, these were removed from the rooms of the society and lost during the eighteenth century. His lenses were of fine quality and were ground by himself. They were nearly all simple lenses, of small size but considerable curvature, and needed to be brought close to the object examined. He had different microscopes for different purposes, giving a range of magnifying powers from 40 to 270 diameters and possibly higher. The number of his lenses is surprising; he possessed not less than 247 complete microscopes, two of which were provided with double lenses, and one with a triplet. In addition to the above, he had 172 lenses set between plates of metal, which give a total of 419 lenses used by him in his observations. Three were of quartz, or rock crystal; the rest were of glass. More than one-half the lenses were mounted in silver; three were in gold.

It is to be understood that all his microscopes were of simple construction; no tubes, no mirror; simple pieces of metal to hold the magnifying-glass and the objects to be examined, with screws to adjust the position and the focus.

Fig. 19.—Leeuwenhoek's Microscope.
Natural size. From Photographs by Professor Nierstrasz, of Utrecht.

The three aspects of one of Leeuwenhoek's microscopes shown in Fig. 19 will give a very good idea of how they were constructed. These pictures represent the actual size of the instrument. The photographs were made by Professor Nierstrasz from the specimen in possession of the University of Utrecht. The instrument consists of a double copper plate in which the circular lens is inserted, and an object-holder—represented in the right-hand lower figure as thrown to one side. By a vertical screw the object could be elevated or depressed, and by a transverse screw it could be brought nearer or removed farther from the lens, and thus be brought into focus.

Fig. 20a shows the way in which the microscope was arranged to examine the circulation of blood in the transparent tail of a small fish. The fish was placed in water in a slender glass tube, and the latter was held in a metallic frame, to which a plate (marked D) was joined, carrying the magnifying glass. The latter is indicated in the circle above the letter D, near the tail-fin of the fish. The eye was applied close to this circular magnifying-glass, which was brought into position and adjusted by means of screws. In some instances, he had a concave reflector with a hole in the center, in which his magnifying-glass was inserted; in this form of instrument the objects were illumined by reflected, and not by transmitted light.