Fig. 5. Piece of petiole of Begonia phyllomaniaca. The proximal end is to the right of the figure.
From these facts it seems practically certain that the condition is one which is due to the meeting of complementary factors. At first sight we may incline to think that the phyllomania is in some way due to the sterility. This however cannot be seriously maintained; for not only is sterility in plants not usually associated with such manifestations, but we know a Begonia called "Wilhelma" which is exactly phyllomaniaca and equally sterile, though it has no trace of phyllomania. This plant arose in the nurseries of MM. P. Bruant of Poitiers, and has generally been described as a seedling of phyllomaniaca, but from the total sterility of that form this account of its origin must be set aside.
Fig. 6. Two right hind feet of polydactyle cats. II shows the lowest development of the condition yet recorded. The digit, d1, which stands as hallux is fully formed and has three phalanges. Both it and the digit marked d2 are formed as left digits. In the normal hind foot of the cat the hallux is represented by a rudiment only.
I shows a further development of the condition. In this foot there are six digits. d1 has two phalanges, but both it and d2 and d3 are shaped as left digits. Thus d3, which in the normal foot would be shaped as a right digit, is transformed so as to look like a left digit.
The phenomenon in this case can hardly be regarded as due to the excitation of dormant buds, for it is apparent on examination that the new growths are not placed in any fixed geometrical relation to the original plant. They arise on the petiole, for example, as small green outgrowths each of which gradually becomes a tiny leaf. The attitude of these leaves is quite indeterminate, and they may point in any direction, some having their apices turned peripherally, some centrally, and others in various oblique or transverse positions (Fig. 5). These little leaves are thus comparable with seedlings, in that their polarity is not related to, or consequent upon that of the parent plant. They have in fact that "individuality," which we associate with germinal reproduction.
There are many curious phenomena seen in the behaviour of parts normally repeated in bilateral symmetry which may some day guide us towards an understanding of the mechanics of division. A part like a hand, which needs the other hand to complete its symmetry, cannot twin by mere division, yet by proliferation and special modifications on the radial side of the same limb, even a hand may be twinned. In the well known polydactyle cats a change of this kind is very common and indeed almost the rule. When extra digits appear at the inner (tibial) side of the limb, they are shaped as digits of the other side, and even the normal digit II (index) is usually converted into the mirror-image of its normal self. The limb then develops a new symmetry in itself. Nevertheless it is not easy to interpret these facts as meaning that there has been some interruption in the control which one side of the body exercises over the other. The heredity of polydactylism is complex but there is little doubt that the condition familiar in the Cat is a dominant. In some human cases also the descent is that of a dominant, but irregularities are so frequent that no general rule can yet be perceived. The dominance of such a condition is an exception to the principle that the less-divided is usually dominant to the more-divided, a fact which probably should be interpreted as meaning that divisions are of more than one kind.
Among ordinary somatic divisions, whether of organs, cells, or patterns of differentiation, the control of symmetry is usually manifested. There is however one class of somatic differentiations which are exceptionally interesting from the fact that they may show a complete independence of such geometrical control. The most familiar examples of these geometrically uncontrolled Variations are to be seen in bud-sports. The normal differentiation of the organs of a plant is arranged on a definite geometrical system, which to those who have never given special attention to such things before, will often seem surprisingly precise. The arrangement of the leaves on uninjured, free-growing shoots can generally be seen to follow a very definite order, just as do the flowers or the parts of the flowers. If however bud sports occur, then though the parts included in the sports show all the geometrical peculiarities proper to the sport-variety, yet the sporting-buds themselves are not related to each other according to any geometrical plan.
A very familiar illustration is provided by the distribution of colour in those Carnations that are not self-coloured. The pigment may, as in Picotees, be distributed peripherally with great regularity to the edges of the petals; or, as in Bizarres and Flakes, it may be scattered in radial sectors which show no geometrical regularity. Now in this case the pigments are the same in both types of flower, and the chemical factors concerned in their production must surely be the same. The difference must lie in the mechanical processes of distribution of the pigment. In the Picotee we see the orderly differentiation which we associate with normality; in the Bizarre we see the disorderly differentiation characteristic of bud-sports. The distribution of colour in this case lies outside the scheme of symmetry of the plant.
Such a distribution is characteristic of bud-sports, and of certain other differentiations in both plants and animals, which I cannot on this occasion discuss. Now reflexion will show that these facts have an intimate bearing on the mechanical problems of heredity. For first in the bud-sports we are witnessing the distribution of factors which distinguish genetic varieties. We do not know the physical nature of those factors, but if we must give them a name, I suppose we should call them "ferments" exactly as Boyle did in 1666. He is discussing how it comes about that a bud, budded on a stock, becomes a branch bearing the fruit of its special kind. He notes that though the bud inserted be "not so big oftentimes as a Pea," yet "whether by the help of some peculiar kind of Strainer or by the Operation of some powerful Ferment lodged in it, or by both these, or some other cause," the sap is "so far changed as to constitute a Fruit quite otherwise qualify'd."[18] We can add nothing to his speculation, and we believe still that by a differential distribution of "ferments" the sports are produced. All the factors are together present in the normal parts; some are left out in the sport. In an analogous case however, that of a variegated Pelargonium which has green and also albino shoots, Baur proved that the shoots pure in colour are also pure in their posterity. There can be no doubt that the sports of Carnations, Azaleas, Chrysanthemums, etc., would behave in the same way.