When handled it stains the fingers; and when burnt it cakes more or less during combustion. Its component parts are usually charcoal ([48]) and bitumen ([216]), with a small portion of clay, and sometimes with pyrites, or sulphat of iron ([236]). What is called slaty coal contains a greater portion of clay than other kinds.

Some foreign writers have ascribed the great wealth possessed by this country to the coals which are here produced in such abundance, and which facilitate, in a very essential degree, nearly all its manufactures, and consequently are a means of promoting its commerce to an extent which is possessed by few other countries. All our great manufacturing towns, Birmingham, Sheffield, Leeds, Glasgow, &c. are situated either in the midst of coal districts, or in places to which coals are conveyed, with little expense, by canal carriage.

Coals are principally obtained from the neighbourhood of Newcastle-upon-Tyne, Sunderland, and Whitehaven. The particular places whence they are obtained have the name of collieries, and the mines from which they are dug are called pits. The deepest of these are in Northumberland, and are worked at more than 900 feet below the surface of the earth. At Newcastle there is a coal-pit near 800 feet in depth, and which, at that depth, is wrought five miles horizontally, quite across, and beneath the bed of the river Tyne, and under the adjacent part of the county of Durham. At Whitehaven the mines are of great depth, and are extended even under the sea, to places where there is above them sufficient depth of water for ships of great burthen, and in which the miners are able sometimes to hear the roaring of the water. On the contrary, in some parts of Durham the coal lies so near the surface of the earth that the wheels of carriages lay it open, and in such quantity as to be sufficient for the use of the neighbourhood.

The beds of coal are of various thicknesses, from a few inches to several feet; and in some places, it is found advantageous to work them at a very great depth, although their thickness does not exceed four or five feet. The thickest bed of English coal, of any extent, is that of the main coal in Staffordshire, which measures about thirty feet. In many places there are several beds above, and parallel to, each other, separated by strata of slate, sandstone, and other minerals. Coal is never found in chalk, and very rarely in limestone.

At Whitehaven, the principal entrance to the coalmine, both for men and horses, is by an opening at the bottom of a hill, through a long passage hewn in a rock. This, by a steep descent, leads to the lowest bed of coal. The greatest part of the descent is through spacious galleries, which intersect other galleries; all the coal having been cut away, except large pillars, which, in deep parts of the mine, are three yards high, and about twelve yards square at the base, such great strength being there required to support the ponderous roof. There are three distinct and parallel strata of coal, which lie at a considerable distance above each other, and which have a communication by pits that are sunk between them. These strata are not always regularly continued in the same plane. The miners occasionally meet with veins of hard rock, which interrupt their further progress, and, at such places, the earth, on one side of the vein, appears to have sunk down, while that on the opposite side has its ancient situation. These breaks the miners call dykes ([4]). When they come to one of them, their first care is to discover whether the coal, in the part adjoining, be higher or lower than that in which they have been working; or, to use their own terms, whether it be cast down or cast up. For this purpose they examine attentively the mineral strata on the opposite side, to see how far they correspond with those which they have already passed through. If the coal be cast down, they sink a pit to it: but if it be cast up, the discovery of it is often attended with great labour and expense.

In general the entrance to coal mines is by perpendicular shafts, and the coals and workmen are drawn up by machinery. As the mines frequently extend to great distances, horizontally, beneath the surface of the earth, peculiar care is necessary to keep them continually ventilated with currents of fresh air, for the purpose, not only of affording to the workmen a constant supply of that vital fluid, but also to expel from the mines certain noxious exhalations which are sometimes produced in them.

One of these, denominated fire damp, is occasioned by the generation of hydrogen gas, or inflammable air ([45]). This gas, when mixed with the common air of the atmosphere, explodes, with great violence, on the approach of a lighted candle, or any other flame; and has, at different times, occasioned the loss of many valuable lives. It is a singular circumstance, that although it is immediately set on fire by a flame, yet it cannot be kindled by red hot iron, nor by sparks produced from the collision of flint and steel. Hence a machine was, some years ago, adopted in the mines near Whitehaven and Workington, in which a wheel formed of steel, and in shape somewhat like that of a razor-grinder, was turned round with very rapid motion against a series of flints, and in such manner as to yield to the miners sufficient light to carry on their work in places where the flame of a candle would occasion the most dreadful explosions. Sir Humphrey Davy has lately invented, for the use of mines where this gas is prevalent, what is called a safety lamp. This is a lamp enclosed in a wire cylinder, the interstices of which are so extremely small as, whilst it gives light, will not explode the gas.

Another injurious exhalation in coal mines arises from the formation of carbonic acid gas, or fixed air ([26]), and is called choke damp. It is the property of inflammable air to rise to the upper parts; but this, on account of its weight, occupies principally the lower parts of mines, and occasions death by suffocation, though it is by no means so fatal as the former. In some mines a prevention of injury arising from each of these gases is attained, by ascertaining the particular crevices in the coal from which they issue, confining them at those places within a narrow space, and, if possible, conveying them out of the mines, through long pipes, into the open air.

There is yet another danger attending coal mines which requires to be provided against, and this is inundation. Many mines have been destroyed by the flooding of water, which springs up within them. The modes by which this was formerly extracted were extremely laborious, and, in numerous instances, entirely inefficacious. By means, however, of the fire or steam engines now in use, the quantity of water raised from mines is perfectly astonishing. Four engines in one of the collieries at Whitehaven discharge more than twenty hogsheads per minute, or upwards of 30,000 hogsheads in every twenty-four hours.

The coal trade, which at present affords so important a nursery for our seamen, and, in numerous other respects, yields advantages of the most beneficial description to this country, was entirely unknown a few centuries ago. Coals were not generally adopted as fuel until the beginning of the reign of Charles I. They were, however, noticed in documents anterior to the reign of Henry III., for, that monarch, in the year 1234, renewed a charter, granted by his father, to the inhabitants of Newcastle, by which they were permitted to dig coal upon payment of 100l. per annum. Coals had been introduced into London before 1306; for in that year, the use of them as fuel was prohibited, from the supposed tendency of their smoke to corrupt the air. About the beginning of the sixteenth century, the best coals were sold in London at the rate of 4s. 1d. per chaldron, and at Newcastle for no more than 2s. 6d. During the ensuing century, however, they were received into such general use, that, in 1648, on a scarcity of coal in London, many of the poor are said to have died from want of fuel. The whole quantity of coals imported into London has been estimated, on an average of four years, ending in March, 1815, to amount to 1,170,000 chaldrons per annum.