A more serious matter is the increased difference between the internal pressure of the gas and the external pressure of the atmosphere at high altitudes. Atmospheric pressure decreases as we ascend. The difference between gas pressure and air pressure thus increases, and it is this difference of pressure which tends to burst the envelope. Suppose the difference of pressure at sea level to have been two-tenths of a pound. For a balloon of twenty feet diameter, this would give a stress on the fabric, per lineal inch, of twenty-four pounds. At an altitude of 2000 feet, the atmospheric pressure would decrease by one pound, the difference of pressures would become one and two-tenths pounds, and the stress on the fabric would be 144 pounds per lineal inch—an absolutely unpermissible strain. There is only one remedy: to allow some of the gas to escape through the safety valve; and this will decrease our altitude.

Ascending and Descending

To ascend, then, we must discard ballast: and we cannot ascend beyond a certain limit on account of the limit of allowable pressure on the envelope fabric. To again descend, we must discharge some of the gas which gives us lifting power. Every change of altitude thus involves a loss either of gas or of ballast. Our vertical field of control may then be represented by a series of oscillations of gradually decreasing magnitude until finally all power to ascend is gone. And even this situation, serious as it is, is made worse by the gradual but steady leakage of gas through the envelope fabric. Here, in a word, is the whole problem of altitude regulation. Air has no surface of equilibrium like water. Some device supplementary to ballast and the safety valve is absolutely necessary for practicable flight in any balloon not staked to the ground.

A writer of romance has equipped his aeronautic heroes with a complete gas-generating plant so that all losses might be made up; and in addition, heating arrangements were provided so that when the gas supply had been partially expended its lifting power could be augmented by warming it so as to decrease its density below even the normal. There might be something to say in favor of this latter device, if used in connection with a collapsible gas envelope.

Methods of mechanically varying the size of the balloon, so as by compressing the gas to cause descent and by giving it more room to increase its lifting power and produce ascent, have been at least suggested. The idea of a vacuum balloon, in which a rigid hollow shell would be exhausted of its contents by a continually working pump, may appear commendable. Such a balloon would have maximum lifting power for its size; but the weight of any rigid shell would be considerable, and the pressure tending to rupture it would be about 100 times that in ordinary gas balloons.

It has been proposed to carry stored gas at high pressure (perhaps in the liquefied condition) as a supplementary method of prolonging the voyage while facilitating vertical movements: but hydrogen gas at a pressure of a ton to the square inch in steel cylinders would give an ultimate lifting power of only about one-tenth the weight of the cylinders which contain it. These cylinders might be regarded as somewhat better than ordinary ballast: but to throw them away, with their gas charge, as ballast, would seem too tragic. Liquefied gas might possibly appear rather more desirable, but would be altogether too expensive.

Screw Propeller for Altitude Control

If a screw propeller can be used on a steamship, a dirigible balloon, or an aeroplane to produce forward motion, there is no reason why it could not also be used to produce upward motion in any balloon; and the propeller with its operating machinery would be a substitute for twice its equivalent in ballast, since it could produce motion either upward or downward. Weight for weight, however, the propeller and engine give only (in one computed case) about half the lifting power of hydrogen. If we are to use the screw for ascent, we might well use a helicopter, heavier than air, rather than a balloon.

The Ballonet