Fur seal for a long time has been a fur of distinction and importance in the fur industry, and consequently the dyeing of seal has constituted an important, though not very extensive branch of the art of fur dyeing. In quite recent times the popularity of seal has become so great that imitations have had to be produced to help supply the demand, and as a result, French seal, or seal-dyed rabbit, and the so-called Hudson seal, which is seal-dyed muskrat, have acquired a great vogue. Occasionally opossum, nutria and other furs are also used for the purpose of producing seal imitations. While the supply of real seals is relatively small, and the demand large, the production of seal imitations has assumed large proportions, and as a result, the dyeing of seal and its imitations or substitutes has come to be a great branch of the fur dyeing industry.
During the past thirty years, the long and tedious processes of dyeing seal and seal imitations, involving the use of dyes of vegetable origin, have largely been superseded by what is known as the Aniline Black dye. It was the French who first worked out successfully the application of Aniline Black to furs, and the method has attained much importance and extensive use in the fur dyeing industry.
Aniline Black is the name given to an insoluble black dyestuff produced by the oxidation of aniline in an acid medium. As a finished product it cannot be used in fur dyeing, but if the hair of the furs be impregnated with a suitable preparation of aniline and then treated with certain oxidizing agents, the color will be formed on the hair, being firmly fixed and giving a fast black, resistant to light, washing and rubbing. The basis of the dye, aniline, is an oily liquid, possessing a peculiar fishy odor, colorless when pure, but rapidly turning brown when exposed to the air. It is obtained from benzol, which is distilled from coal-tar, by treating with nitric acid, forming nitrobenzol, which when subjected to the action of reducing chemicals is converted into aniline. The process may be shown schematically as follows:
Coal—coal-tar—benzol—nitrobenzol—aniline oil—Aniline Black. Aniline Black was by no means a new dye when the French succeeded in producing it on furs. It had been used for a long time previous on textiles, chiefly cotton. The history of the development of the Aniline Black process throws considerable light on its nature and constitution, and so presents many features of interest. As early as 1834, the chemist Runge observed the formation of a dark green color when heated aniline nitrate in the presence of cupric chloride. Fritsche, in 1840, noticed that when chromic acid was added to solutions of aniline salt, a dark green, and sometimes a blue-black precipitate was produced, and later the same chemist obtained a deep blue by the action of potassium chlorate on aniline salt. It is interesting to note that Perkin, in 1856, conducting similar experiments on the oxidation of aniline with chromic acid, obtained a blue-black product from which he extracted the first synthetic coal-tar dye, mauve. Thus far, all the experiments on the oxidation of aniline proved to be merely of scientific interest, but in 1862, Lightfoot patented a process for the practical application of colors formed by the oxidation of aniline on the fibre, a greenish shade being obtained by that method, to which the name emeraldine was given, and by subsequent treatment with bichromate of potash, the green was changed to a deep blue color. Since that time, the methods for producing and applying Aniline Black have been developed and improved, although all the processes were based on the principles incorporated in Lightfoot’s original patent. However, it was not until the last decade of the nineteenth century that the dyeing of furs by means of the Aniline Black method was successfully attempted.
A knowledge of the nature and the manner of the chemical changes which take place in the production of Aniline Black is a valuable aid in obtaining satisfactory results in practise; and although Aniline Black was extensively used before the true character of the reaction was understood, since the successful determination of the constitution of Aniline Black and the discovery of the real nature of the process by Green and his collaborators in 1913, the methods have been considerably improved and simplified, with correspondingly better results in dyeing. As a consequence, the methods of dyeing furs with Aniline Black have also become simpler and more efficient.
A discussion of the chemical changes which occur in the Aniline Black process, is out of place here on account of the highly involved and complicated character of the reactions, to understand which requires a considerable knowledge of specialized organic chemistry. But the essential features of practical importance in the production of Aniline Black are the following: As already noted, one of the characteristic properties of aniline is its tendency to turn from a colorless to a dark-brown liquid in the presence of the air. This change is due, together with certain other causes, to an oxidation brought about by atmospheric oxygen. By employing oxidizing agents, this oxidation can be accelerated and carried further, and eventually the Aniline Black is obtained. Among the substances which may be used to bring about the conversion of aniline to the insoluble black dye are manganese dioxide, lead peroxide, hydrogen peroxide, chromic acid, ferric salts, potassium permanganate, chloric acid and chlorates in the presence of certain metallic salts, particularly those of vanadium and copper. Chlorates, especially sodium chlorate and potassium chlorate, are the most commonly employed oxidizing agents, bichromate of soda or of potash being used, in addition, to complete the oxidation. When using chlorates it is necessary to have present in the dye mixture a small quantity of a metallic salt, which, while not entering into the reaction itself, is nevertheless indispensable as an oxygen carrier. Vanadium compounds have proved to be the most effective for this purpose, and according to an authority, one part of vanadium salt is sufficient to cause the conversion of 270,000 parts of aniline to Aniline Black, the necessary amount of a chlorate being present of course. Salts of copper, cerium, and iron are also extensively used, but they are not quite so efficient as vanadium.
The formation of the Aniline Black in practise takes place in three well-defined steps, which it is important to be able to recognize and distinguish in order to obtain the best results. The first stage of the oxidizing process produces what is called emeraldine, which in the acid medium of the aniline bath is of a dark green, while in the free state it is of a blue color. As the oxidation proceeds, the second stage develops, the emeraldine being converted to a compound called nigraniline. This in acid solution is blue, and the free base is a dark-blue, almost black. It was formerly considered that the nigraniline was the Aniline Black proper, and so when this stage of the oxidation was reached, the process was often interrupted and not carried to the limit. This can account for the fact that Aniline Black dyeings usually turned green after a short time. The reason for this is that nigraniline, when treated with weak reducing agents, as, for example, sulphurous acid, is at once changed to emeraldine, with its dark green color. Since there is usually a small amount of sulphurous acid in the air, especially in places where coal or gas is burned, an Aniline Black dyeing which has not been carried beyond the nigraniline stage will be reduced in time to the emeraldine, and cause the dyeing to become green. The last step in the oxidation changes the nigraniline into what is properly called the ungreenable Aniline Black. Weak reducing substances like sulphurous acid do not change this compound to emeraldine, and stronger reducing agents only convert it to a brownish compound, which changes back to the black when exposed to the air. It is quite evident that in order to obtain a black which will not change to green in time, the oxidation of the aniline must be carried to the last stage. By making tests during the dyeing of the furs, it can easily be determined whether the oxidation has proceeded far enough.
In the dyeing of textiles with Aniline Black, it is customary to carry out the operation at comparatively high temperatures, approaching 100° centigrade. With furs such temperatures are out of the question, so it is necessary to repeat the dyeing several times in order to obtain the proper depth of shade working in the cold. Only the brush method can be used in applying the Aniline Black dye to furs, on account of the strong acidity of the dye mixture, which would ruin the leather, if the dyeing were done in a bath. Indeed, great care must be exercised even by the brush method to avoid too great penetration of the dye liquid, otherwise the roots of the hair will be attacked, and the leather may be “burned” from the hair side. Furs dyed with Aniline Black are frequently after-dyed by the dip-process with logwood or some other similar dye, in order to add to the brilliancy of the dyeing. Combined with intensity of color, Aniline Black on furs is the only dye which will also give fast, lustrous shades, and leave the hair soft and smooth.
There are several methods of applying Aniline Black on furs, the most important being
- 1. One-bath Aniline Black
- 2. Oxidation Aniline Black
- 3. Diphenyl Black
- 4. Aniline Black by Green’s Process