These circumstances are well calculated to lead observers to abandon this object as one too unpromising for further study; but I think the view is partly induced by a misconception. The planet’s diminutive size is a hindrance which cannot be overcome; but the bad definition, resulting from low altitude, may be obviated by those who will select more suitable times for their observations and not be dismayed if their initiatory efforts prove futile. As a naked-eye object, Mercury must necessarily be looked for when near the horizon; but there is no such need in regard to telescopic observation, which ought to be only attempted when the planet surmounts the dense lower vapours and is placed at a sufficient elevation to give the instrument a fair chance of producing a steady image. The presence of sunshine need not seriously impair the definition or make the disk too faint for detail.

I have occasionally seen Mercury, about two or three hours after his rising, with outlines of extreme sharpness and quite comparable with the excellent views obtained of Venus at the time of sunrise or sunset. Those who possess equatoreals should pick up the planet in the afternoon and follow him until after sunset, when the horizontal vapours will interfere. Others who work with ordinary alt-azimuth stands will find it best to examine the planet at his western elongations during the last half of the year, when he may be found soon after rising by the naked eye or with an opera-glass, and retained in the telescope for several hours after sunrise if necessary. He may sometimes also be brought into the field before sunset (at the eastern elongations in the spring months), by careful sweeping with a comet-eyepiece, especially when either the Moon, Venus, or Jupiter happens to be near, and the observer has found the relative place of the planet from an ephemeris.

Schiaparelli’s Results.—Mercury was displayed under several advantages in the morning twilight of November 1882, and I made a series of observations with a 10-inch reflector, power 212. Several dark markings were perceived, and a conspicuous white spot. The general appearance of the disk was similar to that of Mars, and I forwarded a summary of my results to Prof. Schiaparelli, of Milan, who favoured me with the following interesting reply:—

“I have myself been occupied with this planet during the past year (1882). You are right in saying that Mercury is much easier to observe than Venus, and that his aspect resembles Mars more than any other of the planets of the solar system. It has some spots which become partially obscured and sometimes completely so; it has also some brilliant white spots in a variable position. As I observe the planet entirely by day and near the meridian I have been able to see its spots many times, but not always with the necessary distinctness to make drawings sufficiently reliable to serve as a base for a rigorous investigation. It is remarkable that the views taken near superior conjunction have been more instructive for me than those taken when the disk is near dichotomy, the defect in diameter being compensated by the possibility of seeing nearly all the disk, which, under those conditions, is more strongly illuminated. I believe that by instrumental means, such as our 8½-inch refractor at Milan gives, it is possible to prove the rotation-period of Mercury and to gain a knowledge of the principal spots as regards the generality of their forms. But these spots are really very complicated, for, besides the difficulties attending their observation, they are extremely variable.”

Prof. Schiaparelli used an 8½-inch refractor in this work, and was able, under some favourable conditions, to apply a power of 400. The outcome of his researches, encouraged since 1882 by the addition of an 18-inch refractor to the appliances of his Observatory, has been recently announced in the curious fact that the rotation of Mercury is performed in the same time that the planet revolves round the Sun! If this conclusion is just, Mercury constantly presents one and the same hemisphere to the Sun, and the behaviour of the Moon relatively to the Earth has found an analogy. But these deductions of the eminent Italian astronomer require corroboration, and this is not likely to be soon forthcoming owing to the obstacles which stand in the way.

Observations of Schröter and Sir W. Herschel.—Schröter observed Mercury with characteristic diligence between 1780 and 1815. In 1800 he several times remarked that the southern horn of the crescent was blunted, and fixed the planet’s rotation-period at 24h 4m. He also inferred the existence of a mountain 12 miles in height. But elements of doubt are attached to some of Schröter’s observations; and Sir W. Herschel, whose telescopic surveys of both Mercury and Venus were singularly barren of interesting results, pointed out their improbability. But the great observer of Slough was not very amicably disposed towards his rival in Germany. His strictures appear, however, to have been not without justice if we consider them in the light of modern observations.

Surface-markings.—Spots or markings of any kind have rarely been distinguished on Mercury. On June 11, 1867, Prince recorded a bright spot, with faint lines diverging from it N.E. and S. The spot was a little S. of the centre. Birmingham, on March 13, 1870, glimpsed a large white spot near the planet’s E. limb, and Vögel, at Bothkamp, observed spots on April 14 and 22, 1871. These instances are quoted by Webb, and they, in combination with the markings seen by Schiaparelli at Milan and by the author at Bristol in 1882, sufficiently attest that this object deserves more attentive study.

Fig. 29.

1882 Nov. 5, 18h 49m.1882, Nov. 6, 18h 55m.
Mercury as a morning star. (10-inch Reflector; power 212.)