(The small circle in the above diagram represents the planet, the arrows show the direction of motion, and the figures indicate the interval from the time of last North-east elongation.)

A trans-Neptunian Planet.—Is there a planet beyond Neptune? Prof. Forbes wrote a memoir in 1880 tending to prove that two such planets exist. From the influences exerted by these bodies on certain comets of long period, he approximately deduced the positions of the former, and they were searched for with the great Washington refractor, but without success. Flammarion and Todd have also arrived at conclusions affirming the existence of a planet outside Neptune; but the idea has not yet been realized by its telescopic discovery.

Planetary Conjunctions.—Before concluding this chapter, an allusion should be made to a noteworthy class of events, viz., planetary conjunctions. These include some of the most attractive aspects displayed by the heavenly bodies, and they are sometimes witnessed by ordinary persons with the same amount of gratification as by the astronomical amateur. In almanacks the times of such conjunctions are given, so that intending observers may always be prepared for these events. In a strict sense a conjunction occurs at the instant when two or more bodies have the same right ascension, but the term is here intended to have a more general reference, i. e., to denote the assembling together of two or more planets in the same region of the firmament. Historical records furnish us with a considerable number of planetary conjunctions, and some of them were attentively observed long before the telescope came into use. Thus in 2012 B.C., Feb. 26, the Moon, Mercury, Venus, Jupiter, and Saturn were in the same constellation, and within 14° of one another. In 1186 A.D., Sep. 14, the Sun, Moon, and all the known planets are said to have been situated in Libra. In 1524 Venus, Mars, Jupiter, and Saturn were near together. Many similar instances might be quoted, but this is unnecessary. Occasionally the conjunctions were so close that one planet appeared to occult another. Kepler refers to an occultation of Jupiter by Mars which he saw on January 9, 1591; but this would really be a transit of Mars across the disk of Jupiter, if contact actually occurred, for the apparent diameter of Jupiter always exceeds that of Mars. Mœstlin seems to have witnessed an occultation of Mars by Venus on Oct. 3, 1590. It is probable, however, that these were near approaches only. A genuine occultation of Mercury by Venus was telescopically observed on May 17, 1737.

On the evening of March 3, 1881, the new Moon, Venus, Jupiter, and Saturn formed a brilliant quartet in Pisces. On the morning of July 21, 1881, I saw the Moon, Venus, Mars, Jupiter, Saturn, and Aldebaran in the same region above the eastern horizon. There was a very close conjunction of Mars and Saturn on the morning of Sept. 20, 1889. Mr. Marth computed that the nearest approach would occur at 8h 7m A.M., when the distance between the centres would be 54″·8 and less than that (74″) observed at the time of the close conjunction of the same planets on June 30, 1879.

The interest centred in the conjunction of Sept. 20, 1889, was enhanced by the fact that Regulus was only 47′ distant, while Venus was also in the same region. I observed this phenomenon in my 10-inch reflector, and with the help of a comet-eyepiece made the above sketch of the positions of the objects as they were presented in the field.

Fig. 46.

Mars, Saturn, and Regulus in same field, Sept. 20 1889, 4h 45m A.M.

Perhaps there is not much scientific importance attached to the observation of these conjunctions, though comparisons of colour and surface-brilliancy are feasible at such epochs, and are not wholly without value. As spectacles merely, they possess a high degree of interest to everyone who “considers the heavens.”