Dr. Thomas Garnett, the first professor at the institution, was highly respected both as a man and a philosopher, and seems to have been everywhere well spoken of. But Rumford and he could not work together, and his connection with the institution was consequently a short one. Rumford was then authorized to engage Dr. Young as Professor of Natural Philosophy, editor of the journals, and general superintendent of the house, at a salary of £300 per annum. Shortly before this the count's attention had been directed to the experiments on heat, made by Humphry Davy, and on February 16, 1801, it was "resolved that Mr. Humphry Davy be engaged in the service of the Royal Institution, in the capacity of Assistant-Lecturer in Chemistry, Director of the Chemical Laboratory, and Assistant-Editor of the Journals of the Institution; and that he be allowed to occupy a room in the house, and be furnished with coals and candles, and that he be paid a salary of one hundred guineas per annum." In his personal appearance, Davy is said to have been at first somewhat uncouth, and the count was by no means charmed with him at their first interview. It was not till he had heard him lecture in private that Rumford would allow Davy to lecture in the theatre of the institution; but he afterwards showed his complete confidence in the young chemist by ordering that all the resources of the institution should be at his service. Davy dined with Rumford at the count's house in Auteuil, when he visited Paris with Lady Davy and Faraday, in 1813. He commenced his duties at the institution on March 11, 1801. It was on June 15, in the same year, that the managers having objected to the syllabus of his lectures, Dr. Garnett's resignation was accepted; and on July 6 Dr. Young was appointed in his stead. Dr. Young resigned after holding the appointment only two years, as he found the duties incompatible with his work as a physician.
Rumford's life in London now became daily more unpleasant to himself. Accustomed, as he had been in Bavaria, to carry out all his projects "like an emperor," it was difficult for him to work as one member of a body of managers. One by one he quarrelled with his colleagues, and at length left England, in May, 1802, never to return.
When distinguished men of science are placed at the head of an institution like that which Rumford founded, there is always a tendency for the technical teaching of the establishment to become gradually merged into scientific research; and in this case, after Rumford's departure, the genius of Davy gradually converted the Royal Institution into the establishment for scientific research which it has been for more than three quarters of a century. Probably the man who has come nearest to realizing all that Count Rumford had planned for his institution is the late Sir Henry Cole; but he succeeded only through the resources of the Treasury.
On leaving England in May, 1802, Rumford went to Paris, where he stayed till July or August, when he revisited Bavaria and remained there till the following year, when he returned to Paris. He was again at Munich in 1805; but under the new elector, though an old friend of the count, relationships do not seem to have been all that they were with his uncle, and at length the elector himself was compelled to leave Munich, and soon after the Bavarian sovereign became a vassal of Napoleon. On October 24, 1805, Rumford married Madame Lavoisier, a lady of brilliant talents and ample fortune. That his position might be nearly equal to hers, the Elector of Bavaria raised his pension to £1200 per annum. A house, Rue d'Anjou, No. 39, was purchased for six thousand guineas, and Rumford expended much thought and energy in making it, with its garden of two acres, all that he could desire. But the union was not so happy as he anticipated. The count loved quiet; Madame de Rumford was fond of company: to the former the pleasure of the table had no charms; the latter took delight in sumptuous dinner-parties. As time went on, domestic affairs became more and more unpleasant, and at length a friendly separation was agreed upon, after they had lived together for about three years and a half. The count then retired to a small estate which he hired at Auteuil, about four miles from Paris. The Elector of Bavaria was crowned king on January 1, 1806, and in 1810 Rumford was again at Munich, for the purpose of forming, at the king's request, an Academy of Arts and Sciences. At Auteuil the count was joined by his daughter in December, 1811, her journey having been much delayed through the capture of the vessel in which she had taken her passage, off Bordeaux. An engraving of the house at Auteuil, and the room in which Rumford carried on his experiments, was published in the Illustrated London News of January 22, 1870.
While resident at Auteuil, Rumford frequently read papers before the Institute of France, of which he was a member. He complained very much of the jealousy exhibited by the other members with reference to any discoveries made by a foreigner. He died in his house at Auteuil, on August 21, 1814, in the sixty-second year of his age. In 1804 he had made over, by deed of gift to his mother, the sum of ten thousand dollars, that she might leave it by will to her younger children. As before mentioned, Harvard College was his residuary legatee, and the property so bequeathed founded the Rumford Professorship in that institution.
Cuvier, as Secretary of the Institute, pronounced the customary eulogy over its late member. The following passages throw some light on the reputation in which the count was held:—
He has constructed two singularly ingenious instruments of his own contriving. One is a new calorimeter for measuring the amount of heat produced by the combustion of any body. It is a receptacle containing a given quantity of water, through which passes, by a serpentine tube, the product of the combustion; and the heat that is generated is transmitted through the water, which, being raised by a fixed number of degrees, serves as the basis of the calculations. The manner in which the exterior heat is prevented from affecting the experiment is very simple and very ingenious. He begins the operation at a certain number of degrees below the outside heat, and terminates it at the same number of degrees above it. The external air takes back during the second half of the experiment exactly what it gave up during the first. The other instrument serves for noting the most trifling differences in the temperature of bodies, or in the rapidity of its changes. It consists of two glass bulbs filled with air, united by a tube, in the middle of which is a pellet of coloured spirits of wine; the slightest increase of heat in one of the bulbs drives the pellet towards the other. This instrument, which he called a thermoscope, was of especial service in making known to him the varied and powerful influence of different surfaces in the transmission of heat, and also for indicating a variety of methods for retarding or hastening at will the processes of heating and freezing....
He thought it was not wise or good to entrust to men, in the mass, the care of their own well-being. The right, which seems so natural to them, of judging whether they are wisely governed, appeared to him to be a fictitious fancy born of false notions of enlightenment. His views of slavery were nearly the same as those of a plantation-owner. He regarded the government of China as coming nearest to perfection, because, in giving over the people to the absolute control of their only intelligent men, and in lifting each of those who belonged to this hierarchy on the scale according to the degree of his intelligence, it made, so to speak, so many millions of arms the passive organs of the will of a few sound heads—a notion which I state without pretending in the slightest degree to approve it, and which, as we know, would be poorly calculated to find prevalence among European nations.
As for the rest, whatever were the sentiments of M. Rumford for men, they in no way lessened his reverence for God. He never omitted any opportunity in his works of expressing his religious admiration of Providence, and of proposing for that admiration by others, the innumerable and varied provisions which are made for the preservation of all creatures; indeed, even his political views came from his firm persuasion that princes ought to imitate Providence in this respect by taking charge of us without being amenable to us.
In front of the new Government offices and the National Museum in the Maximilian Strasse, in Munich, stand, on granite pedestals, four bronze figures, ten feet in height. These represent General Deroy, Fraunhofer, Schelling, and Count Rumford. The statue of Rumford was erected in 1867, at the king's private expense. In the English garden which Rumford planned and laid out is the monument erected during his absence in England in 1796, and bearing allegorical figures of Peace and Plenty, and a medallion of the count.
The bare enumeration of Rumford's published papers would occupy considerable space, but many of them have more to do with philanthropy and domestic economy than with physics. We have seen that, when guest of Lord George Germaine, he was engaged in experiments on gunpowder. The experiments were made in the usual manner by firing bullets into a ballistic pendulum, and recording the swing of the pendulum. Thompson suggested a modification of the ballistic pendulum, attaching the gun-barrel to the pendulum, and observing the recoil, and making allowance for the recoil due to the discharge from the gun of the products of combustion of the powder, the excess enabled the velocity of the bullet to be calculated. Afterwards he made experiments on the maximum pressure produced by the explosion of powder, and pointed out that the value of powder in ordnance does not depend simply on the whole amount of gas produced, but also on the rapidity of combustion. While superintending the arsenal at Munich, Rumford exploded small charges of powder in a specially constructed receiver, which was closed by a plug of well-greased leather, and on this was placed a hemisphere of steel pressed down by a 24-pounder brass cannon weighing 8081 pounds. He found that the weight of the gun was lifted by the explosion of quantities of powder varying from twelve to fifteen grains, and hence concluded that, if the products of combustion of the powder were confined to the space actually occupied by the solid powder, the initial pressure would exceed twenty thousand atmospheres. Rumford's calculation of the pressure, based upon the bursting of a barrel, which he had previously constructed, is not satisfactory, inasmuch as he takes no account of the fact that the inner portions of the metal would give way long before the outer layers exerted anything like their maximum tension. When a hollow vessel with thick walls, such as a gun-barrel or shell, is burst by gaseous pressure from within, the inner layers of material are stretched to their breaking tension before they receive much support from the outer layers; a rift is thus made in the interior, into which the gas enters, and the surface on which the gas presses being thus increased, the rift deepens till the fracture is complete. In order to gain the full strength due to the material employed, every portion of that material should be stretched simultaneously to the extent of its maximum safe load. This principle was first practically adopted by Sir W. G. Armstrong, who, by building up the breech of the gun with cylinders shrunk on, and so arranged that the tension increased towards the exterior, availed himself of nearly the whole strength of the metal employed to resist the explosion. Had Rumford's barrel been constructed on this principle, he would have obtained a much more satisfactory result.