Kepler's Laws are three in number and may be thus stated--
1st Law. Each planet revolves round the sun in an elliptic orbit, with the sun occupying one of the Foci.
2nd Law. In the revolution of a planet round the sun, the Radius Vector describes equal areas in equal times.
3rd Law. The squares of the periodic times of planets are proportional to the cubes of their mean distances.
Now the question arises, whether it is possible to form a theory of the Aether which shall satisfactorily and philosophically account for all the phenomena associated with Kepler's Laws in their relation to the motions of planets, satellites, or other solar bodies? On the present conception of the Aether such a result is an absolute impossibility. With the theory of the Aether, however, to be submitted to the reader in this work, the result is possible and attainable. If, therefore, such a result is philosophically proved, as I submit will be done, then we shall have greater evidence still that the theory so propounded is a more perfect theory than the one at present recognized by scientists generally.
Art. 26. Kepler's First Law.--Each planet revolves round the sun in an elliptic orbit, the sun occupying one of the Foci.
The ancients thought that the paths of the planets around the sun were circular in form, because they held that circular motion was perfect. A system of circular orbits for the paths of the planets round the sun would be very simple in its conception, and would be full of beauty and harmony. But exact calculations reveal to us that the path of a planet is not exactly that of a circle, as the distance of a planet from the sun in various parts of its orbit is sometimes greater, and sometimes less, than its mean distance.
The planet Venus has the nearest approach to a circular orbit, as there are only 500,000 miles between the mean, and greatest and least distances, but both Mercury and Mars show great differences between their greatest and least distances from the sun.
If, therefore, the orbits of a planet are not exactly circular, what is their exact shape? Kepler solved this problem, and proved that the exact path of a planet round its central body the sun was that of an ellipse, or an elongated circle. Thus he gave to the world the first of his famous laws which stated that each planet revolves round the sun in an orbit which has an elliptic form, the sun occupying one of the Foci.
Not only is the orbit of a planet round the sun elliptic in form, but the path of the moon round the earth, or the path of any satellite, as for example a satellite of Mars or Jupiter or Saturn, is also that of an ellipse, the planet round which it revolves occupying one of the Foci.