Work is also done, as Newton points out in the first and second laws, whenever we apply force to any body, either stationary or already in motion. The results of all observation and experiments prove, that whenever we have two bodies upon which work is being done, the amount of work is determined by the amount of energy transferred from one body to the other, and that the actual amount of energy gained by one is equal to the amount of energy lost by the other.

Energy is always found in association with matter, so that matter has sometimes been termed the Vehicle of Energy. Wherever, therefore, we find energy of any kind or sort, there we find matter also, as the two are inseparably connected together. Thus, wherever we have heat, we have matter in a particular state of motion, generally understood as vibratory motion Wherever we have light, which is also a form of energy, we also have matter in motion, that is the Aether, in a state of periodic wave-motion; and wherever we have electricity, we have again matter possibly in a state of rotatory motion, as we shall see later on. Energy, therefore, is the power which a body possesses to do work.

Art. 52. Conservation of Energy.--The principle of the Conservation of Energy was first enunciated by Mayer in 1842. The principle may be defined as follows: The total amount of all the energy, as light, heat, electricity and magnetism, Gravitation, etc., in Nature is unchangeable; so that, according to this law, the universe possesses a store of energy which is unchangeable in quantity throughout all time. The energy may pass from one form to another, yet the total amount ever remains the same. It is almost unnecessary to say, that this is a principle which, like the conservation of matter, is incapable of absolute proof, but its assumption has greatly helped scientific thought and speculation from time to time. Clerk Maxwell says (Theory of Heat) on this point: “The total energy of any body is a quantity which can neither be increased nor decreased by any mutual action of the bodies, though it may be transformed into those forms of which energy is susceptible.”

The conservation of energy is inseparably connected with the conservation of matter ([Art. 30]). They cannot be divided, because, if energy is only to be found in association with matter, then if the law of the conservation of matter falls to the ground, the principle of the conservation of energy falls with it. Energy, therefore, like matter, cannot be destroyed or created by any process known to man. As there is no process known, either in the chemical or in the physical world, by which new matter may be created by man, so, in relation to energy of any kind or sort, there is no process known by which man can create or even destroy the smallest form of energy that exists. If energy appears in any body or in any particular form, it is solely because of the loss of energy in some other body, or in some other form.

All changes of energy, therefore, are simply changes due to the difference in form in which the energy is manifested. At one time it will be manifested in the form of light, then of heat, then in mechanical motion, and so on. Joule gave us some good illustrations of this principle of the conservation of energy. He showed us how electricity could be changed into heat, and the heat into work. When light, which is a form of energy, is absorbed by any opaque body, it is found that the body which has absorbed it has become hotter. The energy of light has not been destroyed, but as its energy cannot pass through the opaque body, it has been employed in agitating the particles and atoms of that body, which becomes hotter in consequence.

Thus from the principle of the conservation of energy, which is in operation not only in our planetary world, but throughout the whole of the solar and stellar space, and indeed throughout the whole universe, we arrive at the conclusion that the total quantity of energy throughout the universe is unchangeable. In the evolution and development of worlds, and in the destruction of those worlds after long periods of time, throughout all the varied manifestations of heat, light, electricity, and magnetism, associated with the development and destruction of each globe, the sum-total of the energy of the universe remains the same. Meteors may rush into the atmosphere of planets, and be dissolved into Aether through the friction, comets may be dissolved into their component gases as they near the sun, water may be changed into vapour by the heat of the summer sun, vegetation may be produced from apparently dead matter, and then that vegetation may itself decay and return to the dust by which it had been built up, but throughout all these processes of birth and death, of evolution and devolution, the sum-total of active living energy which is associated with all the phenomena, remains unalterable and unchangeable. Such is the teaching of the great principle of the Conservation of Energy as enunciated by Mayer and Helmholtz.

Art. 53. Transformation of Energy.--One of the chief characteristics of energy is, that we can transform it, and it is chiefly of use to us because of its capability to be transformed, but in all its transformations, the total quantity of energy remains the same. The transformation of energy renders it necessary to the existence of all life, and to all physical change in the universe. Mayer showed us that all energy in the solar system primarily derives its existence from the sun, and that all plant life and physical life owe their continued existence to the energy which is poured out from the sun upon the planetary worlds. So that energy is always flowing from the sun into the surrounding space in the form of light, heat, and electricity, the medium of its passage being the universal Aether.

This principle of transformation teaches us, that heat may be converted into electricity; that light may be converted into heat, or electricity may be converted into either heat or light or both. This principle of transformation naturally follows from the principle of the conservation of energy; because, if energy cannot be destroyed in any way, but is made to disappear by any process, it must reappear in some other form, and therefore has been transformed from its original state. So that, whenever one kind of energy disappears, then it is absolutely necessary, according to the principle of conservation of energy, that some other kind shall be produced. There cannot be any real loss or destruction.

That leads us to the next point regarding this principle of transformation, which is that all transformations of energy take place in fixed proportions. When a certain quantity of coal is burned, a certain quantity of heat, or thermal energy as it is sometimes called, is produced, and the quantity of heat so produced is definitely proportionate to the quantity of coal consumed.

If a certain quantity of coal were burned in a perfect steam-engine, that is one in which there would be no loss of heat, then also a definite amount of mechanical work would be done, which would be strictly proportionate to the heat generated by the consumption of the coal. So that when coal is put into an engine, the potential energy of the coal is transformed into kinetic energy of the steam, and that is again transformed into actual mechanical energy of the engine itself, by which work is done in driving or pushing or pulling the train along, and the amount of work done is proportionate to the coal consumed. Illustrations of transformation are common, and may be seen by any person living in a large town. Thus at any electrical station or electric tram terminus, these transformations of various forms of energy are very familiar sights. We have first the transformation of the coal in the furnace into heat. This heat converts water into steam, whose motion is communicated by proper machinery into a dynamo, the product of which is electricity. That electricity is then conveyed along wires, and work is done by it, by moving trams along the connected tram system, or it may be converted into heat in the carbon filament in the car itself, which, if heated enough, will then produce the electric light. So that starting from the coal, we have several transformations therefrom into the forms of heat, light, motion, and finally mechanical energy, which results in Work. The question arises as to what is the law of equivalence in regard to the transformation of energy. That is, if we have a certain amount of energy of a given sort, how much of any other sort can be produced by it? The answer is partly to be found in a statement made by Joule in 1843, which practically embodies what is known as the first law of Thermo-dynamics, and is as follows: “When equal quantities of mechanical effects are produced by any means whatever, from purely thermal sources, or lost in purely thermal effects, then equal quantities of heat are put out of existence or are generated, and for every unit of heat measured by raising a pound of water one degree F. in temperature, you have to expend 772 foot-pounds of work.” From this law we learn that heat may be used to do work, but that a certain amount of heat is always used up in the process. It can also be demonstrated that electric currents can do work, but to generate the currents a certain amount of work must be done.