Professor Davy points this out ([Art. 60]) where he says of heat, “It may with propriety be called a repulsive motion,” while Professor Challis ([Art. 61]) states that “Each atom is the centre of vibrations propagated from it equally in all directions, which give rise to a repulsive action on the surrounding atoms. This action (he adds) is the repulsion of heat which keeps the individual atoms asunder.”

There have been many experiments undertaken which go to prove that a repulsive action between atoms and molecules is produced by heat. It has been demonstrated that certain coloured rings, known as Newton's rings, change their shape and position when the glasses between which they appear are heated, thus indicating the presence of a repulsive power due to the increased heat. If we consider the change of state that heat induces in matter, as, for example, from solid to a liquid, or liquid to a gaseous form, we are compelled to admit that heat possesses an expanding and therefore a repulsive motion. It is almost an universal law that heat expands and cold contracts, and the greater the heat absorbed, the greater the expansion. In the case of a solid being converted into a liquid, a much greater heat or repulsive motion is required to separate the particles, on account of the power of cohesion being greater in the solid than in the liquid. As Professor Tyndall[10] states when dealing with the stability of matter from the molecular standpoint: “Every atom is held apart from its neighbour by a force of repulsion. Why then do not the mutually repellent members of the group part company? The reason of this stability is that two forces, the one attractive and the other repulsive, are in operation between every two atoms, and the position of every atom is determined by the equilibration of these two forces. The points at which attraction and repulsion are equal to each other is the atom's position of equilibrium. When the atoms approach too near each other, repulsion predominates and drives them apart; when they recede to too great a distance, attraction predominates and draws them together.” If, therefore, there are TWO forces at work in the atomic world, viz. attraction and repulsion, then the question arises, Can that repulsive power be increased in any way, and if so, by what means? Such repulsive motion, as experiment and experience teach us, can be increased, and such increase may be derived from the absorption of heat which gives rise to increased atomic motion, and so to increased aetherial motion away from the atom, by which the repulsive action of one atom upon another is increased. Thus an atom's repulsive power may be increased by heat; the greater the heat absorbed, the greater the repulsive power that any atom or body exerts upon a neighbouring atom or body. We can therefore understand how it is, that a body when changed from a solid to a liquid condition occupies a larger space in the latter condition than in the former; or why a body when changed from a liquid to a gaseous condition occupies a still larger volume in the latter than in its previous condition. The expansion in both cases is essentially the result of the increased repulsive motion that has been imparted to its atoms or molecules by the increased heat, and this increased repulsive power has overcome the attractive power of the atoms or molecules, with the result that they have been driven further and further apart, until, in the gaseous state, the atoms may be very far apart indeed. Wherever, therefore, we have heat of any kind, there we have a repulsive motion, such motion being proportionate to the heat radiated, that is, the aetherial waves propagated by the body. If, therefore, in the atomic world we find a repulsive motion, which is due to the vibratory motions of the Aether generated by heat, the question now confronts us, as to whether in the solar system, and indeed all through the universe, there is not the same repulsive motion from a central body due to the wave motions of the Aether termed Heat.

May we not find in the repulsive power of heat in the atomic world, an indication of that very power for which we are seeking in the solar system--that is, a Centrifugal Force or motion which is the exact opposite of the Centripetal Force or attractive power of Gravitation? For if heat be a repulsive motion at all, then to be strictly logical it must be equally repulsive in relation to large masses, the sun and the planets for example, as it is in the atomic world, otherwise we have a phenomenon in Nature which contradicts itself, which assumption would be contrary to the simplicity which is to govern our philosophy, and also contradictory to experience, which is the primary factor of philosophical reasoning. Now what are the facts with reference to the sun, which is the central body of our solar system, and the source of all light and heat in that system? We will look at this aspect of the question under the heading of Radiant Heat.

[10] Heat, a Mode of Motion.

Art. 64. Radiant Heat.--The source of all light and heat, not only of our earth, but also of all the other planets, is to be found in the sun. We have therefore to deal, not with an atom which is generating heat waves on every side, but with a globe about 860,000 miles in diameter, and with a circumference of over 2,700,000 miles. This huge orb consists of a central body, molten or partly solid, with a temperature so hot that it is almost impossible to conceive its intensity. The quantity of heat emitted by the sun has been ascertained by Sir John Herschel from experiments made at the Cape of Good Hope, and by M. Pouillet in Paris.

Sir John Herschel found that the heating power of the sun when it was directly overhead was capable of melting .00754 of an inch of ice per minute. According to M. Pouillet the quantity was .00703 of an inch, which is equal to about half-an-inch per hour. From these results it has been calculated that if the direct heat of the sun were received upon a block of ice one mile square, 26,000 tons would be melted per hour by the heat which would be absorbed. Again, as Herschel[11] puts it: “Supposing a cylinder of ice, 45 miles in diameter, to be continually darted into the sun with the velocity of light, the heat given off constantly from the sun by radiation would be wholly expended in liquefaction on the one hand, while on the other, the actual temperature at the sun's surface would undergo no diminution.” Sir John Herschel further says: “All the heat we enjoy comes from the sun. Imagine the heat we should have to endure if the sun were to approach us, or we the sun, to a point the one hundred and sixtieth part of the present distance. It would not be merely as if 160 suns were shining on us all at once, but 160 times 160 suns according to the rule of inverse squares--that is, 25,600. Imagine a globe emitting heat 25,600 times fiercer than that of an equatorial sunshine at noonday, with the sun vertical. In such a heat there is no solid substance we know of which would not run like water, boil, or be converted into smoke or vapour.”

Lockyer points out that the heat radiated from every square yard of the sun's surface is equal to the amount of heat produced by the burning of six tons of coal on that area in one hour. Now the surface of the sun may be estimated at 2,284,000,000,000 square miles, and there are 3,097,600 square yards in each square mile; what therefore must be the number of tons of coal which must be burnt per hour to represent the amount of heat radiated from the sun into space? The approximate result may be calculated by multiplication, but the figures arrived at fail to give any adequate conception of the actual result.

From these facts it may be seen that the sun has a temperature far exceeding any temperature that can be produced on the earth by artificial means. All known elements would be transformed into a vaporous condition if brought close to the sun's surface. It may readily be seen, therefore, that the sun is constantly sending forth an incessant flood of radiant heat in all directions, and on every side into space. Now if heat be motion, and be primarily due to the vibratory motion of Aether, what must be the volume and the intensity of the aetherial waves, known as heat waves, generated by the sun? When we remember its ponderous mass, with its volume more than 1,200,000 times that of our earth, its huge girth of more than 2-1/2 millions of miles, and this always aglow with fire the most extensive known--fires so intense that they cover its huge form with a quivering fringe of flames which leap into space a distance of 80,000 miles, or even 100,000 miles, or over one-third of the distance of the moon from the earth,--remembering all these facts, what must be the volume and intensity of the aetherial heat waves which they generate and send upon their course into space on all sides! What a very storm of energy and power must there be in this aetherial atmosphere which exists around the sun's huge form, and with what volume of power must the aetherial heat waves speed away from so great a generating source! Some idea as to their velocity of motion may be gained by the fact, that these aetherial heat waves traverse the distance of 92,000,000 miles between the sun and our earth in the short space of 8-1/2 minutes. With such a velocity of motion as that, and with the fact before us that all motion is a source of energy or power, what must be the energy possessed by these heat waves! There must, therefore, be a power in these aetherial heat waves which is strictly proportionate to their intensity and flow. So that, whenever they come into contact with any body, as a planet, as they flow outwards from the sun, they must exert a power upon such a planet which is directed away from the sun, and therefore act upon that planet by the energy of their motion away from the sun, the source of the aetherial heat waves. Therefore, not only in the atomic world is heat a repulsive motion, but equally in the solar world, which is but an atomic world on a large scale, the same principle prevails, and the effect of radiant heat is essentially a repulsive, that is, a centrifugal motion, as it is always directed from the central body, the sun.

Further, it can be shown that the repulsive power of heat in the solar system has already received the attention of scientists, especially in France. This will be seen more fully when we come to deal with the phenomena of comets' tails. One remarkable feature about comets' tails is, that they are always directed away from the sun, and various hypotheses have been advanced to account for that fact. Among them is the hypothesis of M. Faye, in which he assumes that there is a repulsive force which has its origin in the heat of the sun. This repulsive force is not propagated instantaneously, but the velocity of propagation is the same as that of a ray of light. By means of this repulsive power due to the heat of the sun, M. Faye explains how it is that the tails of comets are always turned away from the sun. Here, then, we have an indication of the existence of this repulsive force of heat which we are considering--a repulsive power which finds its source in the aetherial waves, which give rise to the phenomena of Heat, and to which we must look for the ultimate source of that repulsive power or Centrifugal Force which is to form the complementary power to the attractive force of Gravitation.

[11] Lectures on Scientific Subjects.