Art. 74. Direction of Ray of Light.--In [Art. 65] it was shown that the direction of a ray of heat was that of a straight line from the heated or luminous body from which the Aether waves proceeded. We have also seen in [Art. 69] that the aetherial waves which give rise to the phenomena of heat are identical with those that give rise to light, so the direction of a ray of light must also be that of a straight line proceeding from the luminous body. A ray of light is a line perpendicular to the Aether waves which are propagated through space in concentric spheres from the luminous body, which, by its atomic vibrations, gives rise to the light waves. It must, however, be remembered that rays have no physical existence, for it is the waves that are propagated, and not the ray, which simply indicates the direction that the light takes, this truth being known as the rectilineal propagation of light. That light proceeds in straight lines may be proved in several ways. For example, we cannot see round corners, which would be possible if light took a curved path instead of a straight one. A better proof, however, may be obtained by making a small hole in the window-shutter, and allowing the sunlight to pass into the darkened room. The beam of light which passes into the room will then be seen to take a straight course, its presence being revealed by the particles of dust that float about the room.

Another conclusive proof that light proceeds in straight lines is to be found in the fact, that all images formed on any screen by the rays of light after passing through a small hole are inverted. For example, suppose we have a window-shutter with a small hole in it, while in the garden fronting the window there stands a tree. Now if the rays of light which pass from the tree through the hole in the window-shutter are allowed to fall upon a screen in the darkened room, it will be found that the image is inverted.

This is accounted for by the fact, that the rays cross each other at the hole, and proceeding in straight lines, form an inverted picture on the screen. It can further be proved, that the path of a ray of light through space as it proceeds from the sun is also that of a straight line. Whenever there is a solar eclipse we have light so long as we can see the smallest part of the sun's surface. The instant, however, that we have a total eclipse, at that instant the whole of the light of the sun is shut off, and for a brief space there is darkness, until the planet which is causing the eclipse has passed on in its orbit and the sun's surface reappears again. Now if light did not proceed in straight lines, such an event as a total eclipse would be impossible; because, if the light proceeded in curved lines instead of straight ones from the sun, then even when the planet which causes the eclipse got directly between the earth and the sun, the rays of light being curved instead of straight would bend round the eclipsing planet, and so would not all be intercepted, and thus such an event as a total eclipse would be an impossibility. From this we learn, therefore, that the path of a ray of light as it proceeds from the sun through space is that of a straight line, and that the path corresponds to the radius vector of a circle, which is also the path that the centripetal force takes.

Viewing the matter from the standpoint of the solar system, we find the sun, which is the centre of that system, exerting an attractive force along the radius vector of all the orbits of the planets, with a force which decreases in intensity inversely as the square of the distance. At the same time, being the source of all light, it is constantly propagating into space aetherial light waves with a velocity almost inconceivable; which also decrease in exactly the same ratio as the attractive power of the sun decreases. If, therefore, it can be shown that there is such a truth as the dynamical value of light, in the same way that it has been shown that there is a dynamical value of heat, then it follows, that not only is the sun the centre of an attractive power which proceeds in straight lines, but it is equally the centre of a power whose influence and motion are exerted along exactly the same path as the centripetal force, but in an opposite direction, that is, away from the sun. I hope to be able to show that the aetherial light waves do possess such a dynamical value, and if that is accomplished, then not only from the realm of heat, but also from the realm of light, we shall have conclusive evidence of a power or motion whose influence is directed away from the sun, which, therefore, would correspond to a centrifugal force--that is, a force or motion directed from a central body as the sun.

Art. 75. Intensity of Light.--The intensity of light diminishes with the distance from the luminous body, according to the same law that governs sound, and heat, and electricity. We have already seen ([Art. 67]) that the intensity of heat diminishes inversely as the square of the distance, so that if the same law holds good for light that holds good for heat, then, according to the law of the inverse squares, if we double the distance from the luminous body, the intensity of light is only 1/4 of what it was in its first position. If the distance be trebled, then the intensity will be decreased 1/9. This can easily be proved by the following experiment: Suppose we have a lighted lamp, and at a distance of 1, 2 and 3 feet respectively, we have three square surfaces. It can then be demonstrated that the light which falls on the square 1 foot away, if allowed to fall upon the square 2 feet away, would cover four times the area of the first square; and if allowed to fall on the square 3 feet away, it would cover nine times the area. Therefore the intensity of the light on the square 2 feet away, covering four times the area, would only be 1/4 of what it is on the square 1 foot away, while the intensity of light on the square 3 feet away, which covers nine times the area, would only be 1/9 of the intensity received by the first square.

If the difference in the distances therefore be represented by the figures 1, 2, and 3 feet respectively, the intensity would be represented by the figures 1, 1/4, 1/9. The decrease in the intensity of light is really a decrease in motion. The intensity of a note in sound depends upon the vibration of the particles of air, while the intensity of light also depends upon the vibrations of the aetherial atom.

If, therefore, we get a decrease in the vibration of the aetherial atom, the further we get from the luminous body, it can be readily seen that the intensity of light really implies a decrease of motion.

Now let us apply the law of inverse squares in relation to light to the solar system. We have the sun with its huge form all aglow with fires, as the source of all light to the planetary worlds that revolve around it. Year in and year out, for many ages past, the sun has been pouring out its light into space on every side, lighting up the planets or other bodies that revolve round it on that side only which is presented to the sun. Thus Mercury, at its distance of about 36,000,000 miles, obtains a light from the sun which is of far greater intensity than the light which Venus receives, while Venus receives a light of greater intensity than the light which the Earth receives, and the Earth receives light of greater intensity than any of the planets outside its orbit in the solar system, as Mars, Jupiter, Saturn, Uranus, or Neptune. This decrease in the intensity of light is according to the inverse square of the distance from the central body, the sun. So that if we have one planet at twice the distance from the sun, as compared with another planet, the intensity of light at that distance will be only 1/4 of the intensity received by the nearer planet. This decrease of the intensity of light, however, may be compensated for by a difference in the constituents of the planets' atmosphere, by means of which it may be possible that the outermost planets enjoy climatic conditions similar to our own.

Now we have proved, in the previous chapter, that heat is a repulsive motion, and as the same aetherial waves give rise to the phenomena of light, then it ought to follow that light has equally a repulsive power on the planets with which it comes into contact. If that can be proved, and I submit that it can, then from the phenomena of light, we learn that there is a force, or rather a motion, ever proceeding from the sun in straight lines, as shown in the previous Art., which decreases in power or intensity inversely as the square of the distance. So that not only is the sun the centre of an attractive Force, the Centripetal force, or the attractive Force of Gravity, which proceeds in straight lines through space, decreasing in intensity inversely as the square of the distance, but at the same time it is also the centre of a motion, that is, the aetherial wave motion of light, which takes exactly the same path as Gravitation Attraction, and which is subject to exactly the same laws. Unlike Gravitation Attraction, however, its power and motion is ever directed away from the central body, the sun; and if such motion exerts any power on any planet with which it comes into contact, that power or motion can only be a repulsive motion in the same way that heat is a repulsive motion. Assuming, therefore, that light, through the medium of the aetherial waves, does exert this repulsive motion, then, according to the law of inverse squares, it can be seen that if a planet's distance be doubled, the repelling power of the aetherial light waves would be decreased 1/4, while at the same time the attractive power of the centripetal force would be decreased 1/4 also. If, on the other hand, the planet's distance from the sun be reduced to 1/2 of its former distance, then the repelling power of the aetherial light waves would be increased four times, but contemporaneously with the increase there would be an increase in the attractive power of gravity, which would exactly counterbalance the increased repelling power of the light waves. So that in assuming that there is this repelling power in the light waves, there are thus two forces in existence in the solar system (which is a type of all other systems), or rather two motions, as all forces resolve themselves into motions of some kind, one motion ever tending from the central body, that is, the motion of the aetherial light waves, and the other tending to the central body, that is, the force of gravity, which we shall see later on is also a motion of the Aether, whose influence is ever towards the central body, be it a sun, star, or planet. These two motions, therefore, are subject to the same law, viz. that their power or intensity is not only directed in straight lines from the central body, but their intensity is regulated exactly by the same law of inverse squares. If the repelling motion be doubled, then the attractive motion or power would be doubled also; if the repelling motion be quadrupled or halved, then the attractive force of gravity would be quadrupled or halved in the same way, the two forces being exactly increased or decreased in the same ratio according to the law of inverse squares.

Art. 76. Velocity of Light.--The transmission of light is not instantaneous, as it requires time for its propagation through space, from the luminous body which gives rise to all light, as the sun for example, until it reaches the body which it lights up. The velocity of the light waves, however, is so great, that it is almost impossible to give any comparative idea of their rate of transmission. The velocity of the light waves was first established by Roemer, a Danish astronomer, in 1675. He ascertained the velocity of light by observations made on the satellites of Jupiter. His methods of reasoning can easily be understood by reference to the following diagram.