“In this case two targets were erected, one behind the other, so as to appear as one object when viewed from the gun, and a space of 30 feet was left between them. The front target was intended to exhibit the perforations of the shell before bursting, and the back one to show the effect of the fragments resulting from explosion.
“After some preliminary experiments twenty-two shells were fired at the front target, and of these only one missed the object of aim. The following are the particulars:—Seventeen hit the first target direct, and burst behind it, the fragments penetrating the second one; three grazed and burst immediately in front of the first target, and perforated both with the pieces; one hit the bottom of the first target and exploded in the ground, and the remaining one missed entirely and burst on some rocks nearly on line beyond. A strong side wind was blowing at the time, and accounted for the deviation of this single shell.
“Four shells and three shots were then fired at an elevation of 6 degrees, from a distance of 2,000, or, more accurately, 1,964 yards. All these struck within the breadth of the target; but the elevation being scarcely sufficient, they all fell a little short, except one shell, which, ranging somewhat further than the others, hit the target and burst as usual.
“The results of this shell-firing were as follows:—The front target contained 51 holes, and the back one 164, while the ground between and adjacent to the targets exhibited about 70 perforations by fragments of shells, the greater portion of which were afterwards recovered by digging.
“With respect to ranges exceeding 2,000 yards, I may state that on previous occasions the gun had been tried up to 3,000 yards—a distance which was reached with an elevation of 11 deg., and the usual charge of 10 ounces of powder, or 1-8th the weight of the projectile. By augmenting the charge the range is increased, but the accuracy is impaired; and I therefore adhere to the 10-ounce charge, which gives ample penetration, as the experiments at the butt will testify. I may also observe that the ranges obtained with this charge bear a favourable comparison with those of the heaviest round-shot guns fired with a much larger proportion of powder.
“It is a curious fact, and one which greatly increases the efficiency of the shells, that owing to the bursting charge requiring a minute space of time to mature its ignition after the firing of the fuse by impact, the shell is enabled to travel four or five feet after striking an object before disruption takes place. Hence, therefore, it acts as a shot before it bursts as a shell. When it perforates a target the explosion may be seen to take place at a few feet beyond, and when it grazes it has time to rise, and may be observed to burst after clearing the ground. If, therefore, it were fired against a ship, it would first penetrate the side in its entirety, and then, bursting, traverse the deck in fragments; or if directed against troops, it would pierce the front line as a bullet, and operate like grape-shot beyond. The shells explode with equal certainty whether the first substance struck be hard or soft; and, in fact, they even burst on the surface of water, provided the elevation of the gun be not too great. The bursting charge is very small, but it suffices to break the shell into about 30 pieces, which pursue their forward course without too much dispersion.
“It is impossible to contemplate the results obtained with this gun without being impressed with the important part it is calculated to perform in warfare. Opposed to any ordinary field-piece, it would be like the Greener rifle against the old musket; and no gun could be worked at an embrasure if a fire of shells were directed against it by one of these rifled pieces placed within the distance of a mile. In naval operations, also, guns of this description, but of larger size, might apparently be applied with great effect—more especially as a system of breech loading, combined with a self-recovering recoil action, would be peculiarly advantageous in firing from portholes. Even light 5-pounders, sending their shells from great distances through the sides of a ship and sweeping the decks with fragments of lead and iron, would produce very destructive effects; and a small swift steamer carrying a few such guns might prove a very troublesome opponent to a large ship of war. But if the dimensions of the gun were increased so as to adapt it for shells of 20 lb. or 30 lb., still more terrible injury could be inflicted at greater distances; and the ponderous artillery now used at sea would be of little service when opposed to the accurate and long-range firing of such rifled shell-guns.”
Since the publication of these remarks, rifled artillery of Mr. Armstrong’s production has, we believe, been extensively tried. The results of these trials have been most extraordinary; and the principle is, we believe, identical with the expansive principle bearing my cognomen: an extension of the principle of the Greener and Enfield rifle, hereafter to be described. I have had the honour of being consulted both by English and foreign authorities, and I have assisted in constructing rifled artillery for several years; and the experience thus obtained justifies me in making known to the world some of my observations on this subject.
Rifled cannon with elongated projectiles, similar in shape and principle to the Greenerian bullet, give, with charges inferior to those of the old régime and calibre, more than double the range, with ten times greater accuracy.
Now, either of these points, if gained, would be most important improvements, and when combined would produce the most extraordinary results. But this is not all: a great diminution in the weight of the gun might also be effected; and these advantages may be still further extended when we have had time to increase our knowledge of the valuable materials with which we are only just now becoming acquainted.