That both Jacob’s and Whitworth’s bullets partake of a certain amount of “wabbling” motion after leading the muzzle of the gun is certain, from their length, as well as from the fact that in both the centre of gravity is in the hinder part of the bullet; thus they are both in reality bad in a scientific point of view.

If any merit can be claimed for either, it is on account of the mechanical ingenuity displayed in neutralizing the effects of want of scientific principle. The want of principle, however, is not the only evil, were such guns to come into general use; their manufacture, in the hands of that portion of the gun trade which never estimates consequences, and never studies the theory of the science at all, but manufactures all fire-arms by “rule of thumb,” would prove dangerous in the extreme.

The bursting of barrels in any attempt to project lengthened projectiles is of a very different description to that which ordinarily occurs, on account of the different direction in which the force is applied. In consequence of their greater length, and their increased friction against the sides of the barrel, they are more reluctantly set in motion—i. e., their inertia is with greater difficulty overcome. The result of this is, that in overcoming their inertia the greatest strain is exerted backward, on the breech of the gun; which, if not more firm than usual, is blown out, entering the forehead of the shooter: an accident which would prove fatal not only to the gun, but to the person who used it.

This accident may no doubt be effectually guarded against by strengthening the breech end of the gun as well as the breech itself; but without that precaution it is to be feared that such accidents would be of frequent occurrence.

A considerable error may easily be promulgated, as to the heat necessary to be applied ere gunpowder will explode. A late writer says, it is necessary to raise it to 600 degrees before it is explosive. This is a splitting of hairs, and such a palpable mystification, that it is scarcely worth noticing. But I will explain: if you place upon a plate a few grains of powder, by heating the plate underneath (for instance, on a smith’s fire,) you will see the sulphur giving out a blue flame, it being easily fused. As the plate becomes heated to nearly a red heat, the whole explodes, in consequence of the charcoal and nitre not being hot enough to allow the gases generating the heat to be liberated; but as soon as this does take place the explosion ensues. Now, it is a well known fact, that the smallest particle of matter possessing above 600° of heat, will ignite any quantity of powder it comes in immediate contact with; we will suppose with one portion of charcoal, one of sulphur, and one of nitre (it matters not how small they are: a ten hundredth part of the substance of one of the smallest grains of powder would suffice), and if it has the means of communicating to these small portions 600°, this is sufficient, as their explosion induces also that of the very largest quantity: for it ought to be perfectly understood, that a great explosion is but so many millions of small ones combined, and by their united force effecting the great results we see. The ingredients of powder are ground and intimately mixed together on the bed of the mill to the great extent they are, to the end that, if possible, there shall not be in the composition two grains or portions of one ingredient in immediate contact with each other; but that, when the ignition does take place, each may be present to add its peculiar gas, in order that each affinity may be supplied. Thus becomes evident the necessity of a most extensive incorporation, a blending and equal division of mixture throughout the whole material.

The advantage of unglazed gunpowder is here fully shown; for it presents an inequality, a roughness of surface, over which the flame from the percussion mixture cannot travel without igniting some of the prominent parts, and thus the whole. You may glaze powder and make it so smooth that it would be very difficult indeed to ignite; but except that it enables the powder to resist moisture better, it is otherwise very detrimental, as tending both to prevent ignition and lengthening the period of effecting it.

The flame from the percussion powder is of that intense and vivid description, that if a charge of powder in the breech of a gun is loose, the flame will form a mass of condensed air round itself, and driving the grains of powder before it, prevent the immediate contact of the heat and the particles of powder, until the heat is expended; and thus arises a “miss fire.” If the powder is up only to the nipple, there being a quantity of air in the tube of that nipple, the explosion of the fluid will drive down this air, and condense it between the powder and top of the nipple to such an extent as to cause a certain “miss fire.” It becomes requisite to find a remedy for this, and it can only be done by bringing the powder into the very vicinity of the explosion on the nipple. This can be effected in several ways, but the most perfect is to obtain as direct a communication as possible; a widening of the perforations of the breech, and space to allow the powder free access up the nipple. For this purpose we propose an improved form of nipple. The centre one of the three (here shown in section) is considerably broader and shorter than the others. A cap made broader and not so deep would be an improvement, as bringing the point of ignition nearer the charge, and thus effecting a saving of time; for great and wonderfully quick as is the explosion, it is clear to the senses that it may be quickened. We are not finding fault with the “lightning being too slow,” as Colonel Hawker says; but science means perfection, and the nearer we can come to it the better.

OLD PLAN OF NIPPLE.NEWEST PLAN OF NIPPLE.IMPROVED NIPPLE OF 1835.

The nipples now in general use have the smaller orifice at the bottom, and, being lined with platina, never foul. Experience has shown that admitting the gunpowder into the nipple “is not advantageous,” especially with large grained powder; by constructing the nipple with the small orifice at the bottom, the largest grain can be used beneficially. As the velocity of the fulminating gas is much greater than “a train” of gunpowder ever can be, quickness is also gained by their adoption. I have used them for many years with great success; nothing but cost deters their general adoption. The passing of the flame through the very small opening in the platina, by this very high impingement, increases its heat to a great extent, ensuring explosion.

The true science of gunnery consists in knowing that a certain force is requisite to effect a certain purpose, or, in other words, to kill at a certain distance; and also how to arrange that force so as to effect the purpose without having any extra force, or any waste of powder, nor yet too little, but with a corresponding result: a sufficiency; neither more nor less. This we have shown is attainable by the mechanical arrangement of granulation; for it is useless to use less, or to use an iota more of fine grain powder, if the size larger will effect the purpose without that iota. Propellant velocity is the grand desideratum in all gunnery; the obtainment of this, to the greatest extent, is the power of killing at the greatest distance: all ranges are dependent on velocity; no extreme range can be obtained without a corresponding speed.