There is but a single point which indeed would be more correctly placed among our observations on the use of the spleen, but which it will not be altogether impertinent to notice in this place incidentally. From the splenic branch which passes into the pancreas, and from the upper part, arise the posterior coronary, gastric, and gastroepiploic veins, all of which are distributed upon the stomach in numerous branches and twigs, just as the mesenteric vessels are upon the intestines; in like manner, from the inferior part of the same splenic branch, and along the back of the colon and rectum proceed the hemorrhoidal veins. The blood returning by these veins, and bringing the cruder juices along with it, on the one hand from the stomach, where they are thin, watery, and not yet perfectly chylified; on the other thick and more earthy, as derived from the fæces, but all poured into this splenic branch, are duly tempered by the admixture of contraries; and nature mingling together these two kinds of juices, difficult of coction by reason of most opposite defects, and then diluting them with a large quantity of warm blood, (for we see that the quantity returned from the spleen must be very large when we contemplate the size of its arteries,) they are brought to the porta of the liver in a state of higher preparation; the defects of either extreme are supplied and compensated by this arrangement of the veins.

CHAPTER XVII
THE MOTION AND CIRCULATION OF THE BLOOD ARE CONFIRMED FROM THE PARTICULARS APPARENT IN THE STRUCTURE OF THE HEART, AND FROM THOSE THINGS WHICH DISSECTION UNFOLDS

I do not find the heart as a distinct and separate part in all animals; some, indeed, such as the zoophytes, have no heart; this is because these animals are coldest, of no great bulk, of soft texture or of a certain uniform sameness or simplicity of structure; among the number I may instance grubs and earth-worms, and those that are engendered of putrefaction and do not preserve their species. These have no heart, as not requiring any impeller of nourishment into the extreme parts; for they have bodies which are connate and homogeneous, and without limbs; so that by the contraction and relaxation of the whole body they assume and expel, move and remove the aliment. Oysters, mussels, sponges, and the whole genus of zoophytes or plant-animals have no heart; for the whole body is used as a heart, or the whole animal is a heart. In a great number of animals, almost the whole tribe of insects, we cannot see distinctly by reason of the smallness of the body; still in bees, flies, hornets, and the like, we can perceive something pulsating with the help of a magnifying glass; in pediculi, also, the same thing may be seen, and as the body is transparent, the passage of the food through the intestines, like a black spot or stain, may be perceived by the aid of the same magnifying glass.

In some of the bloodless[32] and colder animals, further, as in snails, whelks, shrimps, and shell-fish, there is a part which pulsates—a kind of vesicle or auricle without a heart—slowly indeed, and not to be perceived save in the warmer season of the year. In these creatures this part is so contrived that it shall pulsate, as there is here a necessity for some impulse to distribute the nutritive fluid, by reason of the variety of organic parts, or of the density of the substance; but the pulsations occur unfrequently, and sometimes in consequence of the cold not at all, an arrangement the best adapted to them as being of a doubtful nature, so that sometimes they appear to live, sometimes to die; sometimes they show the vitality of an animal, sometimes of a vegetable. This seems also to be the case with the insects which conceal themselves in winter, and lie, as it were, defunct, or merely manifesting a kind of vegetative existence. But whether the same thing happens in the case of certain animals that have red blood, such as frogs, tortoises, serpents, swallows, may be made a question without any kind of impropriety.

In all the larger and warmer, because [red-]blooded animals, there was need of an impeller of the nutritive fluid, and that perchance possessing a considerable amount of power. In fishes, serpents, lizards, tortoises, frogs, and others of the same kind there is a heart present, furnished with both an auricle and a ventricle, whence it is perfectly true, as Aristotle has observed,[33] that no [red-]blooded animal is without a heart, by the impelling power of which the nutritive fluid is forced, both with greater vigour and rapidity to a greater distance; it is not merely agitated by an auricle as it is in lower forms. And then in regard to animals that are yet larger, warmer, and more perfect, as they abound in blood, which is ever hotter and more spirituous, and possess bodies of greater size and consistency, they require a larger, stronger, and more fleshy heart, in order that the nutritive fluid may be propelled with yet greater force and celerity. And further, inasmuch as the more perfect animals require a still more perfect nutrition, and a larger supply of native heat, in order that the aliment may be thoroughly concocted and acquire the last degree of perfection, they required both lungs and a second ventricle, which should force the nutritive fluid through them.

Every animal that has lungs has therefore two ventricles to its heart, one right, another left; and wherever there is a right, there also is there a left ventricle; but the contrary of this does not hold good: where there is a left there is not always a right ventricle. The left ventricle I call that which is distinct in office, not in place from the other, that one namely which distributes the blood to the body at large, not to the lungs only. Hence the left ventricle seems to form the principal part of the heart; situated in the middle, more strongly marked, and constructed with greater care, the heart seems formed for the sake of the left ventricle, and the right but to minister to it; for the right neither reaches to the apex of the heart, nor is it nearly of such strength, being three times thinner in its walls, and in some sort jointed on to the left, (as Aristotle says;) though indeed it is of greater capacity, inasmuch as it has not only to supply material to the left ventricle, but likewise to furnish aliment to the lungs.

It is to be observed, however, that all this is otherwise in the embryo, where there is not such a difference between the two ventricles; but as in a double nut, they are nearly equal in all respects, the apex of the right reaching to the apex of the left, so that the heart presents itself as a sort of double-pointed cone. And this is so, because in the fœtus, as already said, whilst the blood is not passing through the lungs from the right to the left cavities of the heart, but flowing by the foramen ovale and ductus arteriosus, directly from the vena cava into the aorta, whence it is distributed to the whole body, both ventricles have in fact the same office to perform, whence their equality of constitution. It is only when the lungs come to be used, and it is requisite that the passages indicated should be blocked up, that the differences in point of strength and other things between the two ventricles begin to be apparent: in the altered circumstances the right has only to throw the blood through the lungs, whilst the left has to impel it through the whole body.

There are further within the heart numerous braces, so to speak, fleshy columns and fibrous bands, which Aristotle, in his third book on Respiration, and the Parts of Animals, entitles nerves. These are variously extended, and are either distinct or contained in grooves in the walls and partition, where they occasion numerous pits or depressions. They constitute a kind of small muscles, which are superadded and supplementary to the heart, assisting it to execute a more powerful and perfect contraction, and so proving subservient to the complete expulsion of the blood. They are in some sort like the elaborate and artful arrangement of ropes in a ship, bracing the heart on every side as it contracts, and so enabling it more effectually and forcibly to expel the charge of blood from its ventricles. This much is plain, at all events, that some animals have them strongly marked, others have them less so; and, in all that have them, they are more numerous and stronger in the left than in the right ventricle; and whilst some have them in the left, there are yet none present in the right ventricle. In the human subject, again, these fleshy columns and braces are more numerous in the left than in the right ventricle, and they are more abundant in the ventricles than in the auricles; occasionally, indeed, in the auricles there appear to be none present whatsoever. In large, more muscular and hardier bodies, as of countrymen, they are numerous; in more slender frames and in females they are fewer.

In those animals in which the ventricles of the heart are smooth within, and entirely without fibres or muscular bands, or anything like foveæ, as in almost all the smaller birds, the partridge and the common fowl, serpents, frogs, tortoises, and also fishes, for the major part, there are no chordæ tendineæ, nor bundles of fibres, neither are there any tricuspid valves in the ventricles.

Some animals have the right ventricle smooth internally, but the left provided with fibrous bands, such as the goose, swan, and larger birds; and the reason here is still the same as elsewhere, as the lungs are spongy, and loose, and soft, no great amount of force is required to force the blood through them; hence the right ventricle is either without the bundles in question, or they are fewer and weaker, not so fleshy or like muscles; those of the left ventricle, however, are both stronger and more numerous, more fleshy and muscular, because the left ventricle requires to be stronger, inasmuch as the blood which it propels has to be driven through the whole body. And this, too, is the reason why the left ventricle occupies the middle of the heart, and has parietes three times thicker and stronger than those of the right. Hence all animals—and among men it is not otherwise—that are endowed with particularly strong frames, and that have large and fleshy limbs at a great distance from the heart, have this central organ of greater thickness, strength, and muscularity. And this is both obvious and necessary. Those, on the contrary, that are of softer and more slender make have the heart more flaccid, softer, and internally either sparely or not at all fibrous. Consider farther the use of the several valves, which are all so arranged, that the blood once received into the ventricles of the heart shall never regurgitate, once forced into the pulmonary artery and aorta shall not flow back upon the ventricles. When the valves are raised and brought together they form a three-cornered line, such as is left by the bite of a leech; and the more they are forced, the more firmly do they oppose the passage of the blood. The tricuspid valves are placed, like gate-keepers, at the entrance into the ventricles, from the venæ cavæ and pulmonary veins; lest the blood when most forcibly impelled should flow back; and it is for this reason that they are not found in all animals; neither do they appear to have been constructed with equal care in all the animals in which they are found; in some they are more accurately fitted, in others more remissly or carelessly contrived, and always with a view to their being closed under a greater or a slighter force of the ventricle. In the left ventricle, therefore, and in order that the occlusion may be the more perfect against the greater impulse, there are only two valves, like a mitre, and produced into an elongated cone, so that they come together and touch to their middle; a circumstance which perhaps led Aristotle into the error of supposing this ventricle to be double, the division taking place transversely. For the same reason, indeed, and that the blood may not regurgitate upon the pulmonary veins, and thus the force of the ventricle in propelling the blood through the system at large come to be neutralized, it is that these mitral valves excel those of the right ventricle in size and strength, and exactness of closing. Hence, too, it is essential that there can be no heart without a ventricle, since this must be the source and storehouse of the blood. The same law does not hold good in reference to the brain. For almost no genus of birds has a ventricle in the brain, as is obvious in the goose and swan, the brains of which nearly equal that of a rabbit in size; now rabbits have ventricles in the brain, whilst the goose has none. In like manner, wherever the heart has a single ventricle, there is an auricle appended, flaccid, membranous, hollow, filled with blood; and where there are two ventricles, there are likewise two auricles. On the other hand, however, some animals have an auricle without any ventricle; or at all events they have a sac analogous to an auricle; or the vein itself, dilated at a particular part, performs pulsations, as is seen in hornets, bees, and other insects, which certain experiments of my own enable me to demonstrate have not only a pulse, but a respiration in that part which is called the tail, whence it is that this part is elongated and contracted now more rarely, now more frequently, as the creature appears to be blown and to require a larger quantity of air. But of these things, more in our Treatise on Respiration.