With the discovery and development of the oil wells in the United States about 1860 a new fuel was found in the crude petroleum, as well as a source of light. The application of petroleum to engines, either to produce furnace heat, or as introduced directly into the piston cylinder mixed with inflammable gas to produce flame heat and expansion, has given a wonderful impetus to the utilisation of gas engines.
G. H. Brayton of the United States in 1873 invented a very efficient engine in which the vapour of petroleum mixed with air constituted the fuel. Adolf Spiel of Berlin has also recently invented a petroleum engine.
Principal among those to whom the world is indebted for the revolution in the construction of gas engines and its establishment as a successful rival to the steam engine is Nicolaus A. Otto of Deutz on the Rhine.
In the Lenair and Hugon system the expansive force of the exploded gas was used directly upon the piston, and through this upon the other moving parts. A great noise was produced by these constant explosions. In the Otto system the explosion is used indirectly and only to produce a vacuum below the piston, when atmospheric pressure is used to give the return stroke of the piston and produce the effective work. The Otto engine is noiseless. This is accomplished by his method of mixing and admitting the gases. He employs two different mixtures, one a “feebly explosive mixture,” and the other “a strongly explosive mixture,” used to operate on the piston and thus prolong the explosions.
The mode of operation of one of Otto’s most successful engines is as follows: The large fly wheel is started by hand or other means, and as the piston moves forward it draws into the cylinder a light charge of mixed coal gas and air, and the gas inlet is then cut off. As the piston returns it compresses this mixture. At the moment the down stroke is completed the compressed mixture is ignited, and, expanding, drives the piston before it. In the second return stroke the burnt gases are expelled from the cylinder and the whole made ready to start afresh. Work is actually done in the piston only during one-quarter of the time it is in motion. The fly-wheel carries forward the work at the outset and the gearing the rest of the time.
Otto was associated with Langen in producing his first machine, and its introduction at the Centennial Exposition at Philadelphia in 1876 excited great attention. Otto and E. W. and W. J. Crossley jointly, and then Otto singly, subsequently patented notable improvements.
Simon Bischof and Clark, Hurd and Clayton in England; Daimler of Deutz on the Rhine, Riker and Wiegand of the United States, and others, have made improvements in the Otto system.
Ammoniacal gas engines have been successfully invented. Aqua ammonia is placed in a generator in which it is heated. The heat separates the ammonia gas from the water, and the gas is then used to operate a suitable engine. The exhaust gas is cooled, passed into the previously weakened solution, reabsorbed and returned to the generator. In 1890 Charles Tellier of France patented an ammoniacal engine, also means for utilising solar heat and exhaust steam for the same purpose; and in the same year De Susini, also of France, patented an engine operated by the vapour of ether; A. Nobel, another Frenchman, in 1894, patented a machine for propelling torpedoes and other explosive missiles, and for controlling the course of balloons, the motive power of which is a gas developed in a closed reservoir by the chemical reaction of metallic sodium or potassium in a solution of ammonia. These vapour engines are used for vapour launches, bicycles and automobiles.
In 1851 the ideas of Huygens and Papin of two hundred years before were revived by W. M. Storm, who in that year took out a gunpowder engine patent in the United States, in which the air was compressed by the explosions of small charges of gunpowder. About fifteen other patents have been taken out in America since that time for such engines. In some the engines are fed by cartridges which are exploded by pulling a trigger.
As to gas and vapor engines generally, it may now be said, in comparison with steam, that although the steam engine is now regarded as almost perfect in operation, and that it can be started and stopped and otherwise controlled quietly, smoothly, instantaneously, and in the most uniform and satisfactory manner, yet there is the comparatively long delay in generating the steam in the boiler, and the loss of heat and power as it is conducted in pipes to the working cylinder, resulting in the utilisation of only ten per cent of the actual power generated, whereas gas and vapour engines utilise twenty-five per cent of the power generated, and the flame and explosions are now as easily and noiselessly controlled as the flow of oil or water. The world is coming to agree with Prof. Fleeming Jenkins that “Gas engines will ultimately supplant the steam.”