Public documents are still extant written in the twelfth century on paper made from flax and rags; and paper mills began to put in an appearance in Germany in the fourteenth century, in which the fibre was reduced to pulp by stampers. England began to make paper in the next century. Pulping the fibre by softening it in water and beating the same had then been practised for four centuries. Rollers in the mills for rolling the pulp into sheets were introduced in the fifteenth century, and paper makers began to distinguish their goods from those made by others by water marks impressed in the pulp sheets. The jug and the pot was one favourite water mark in that century, succeeded by a fool’s cap, which name has since adhered to paper of a certain size, with or without the cap. So far was the making of paper advanced in Europe that about 1640 wall paper began to be made as a substitute for tapestry; although as to this fashion the Chinese were still ahead some indefinite number of centuries.

Holland was far advanced in paper-making in the seventeenth century. The revolution of 1688 having seriously interrupted the art in England, that country imported paper from Holland during that period amounting to £100,000. It was a native of Holland, Rittenhouse, who introduced paper-making in America and erected a mill near Philadelphia in the early years of the eighteenth century, and there made paper from linen rags.

The Dutch also had substituted cylinders armed with blades in place of stampers and used their windmills to run them. The Germans and French experimented with wood and straw.

In the latter part of the eighteenth century some manufacturers in Europe had learned to make white paper from white rags, and as good in quality, and some think better, than is made at the present day. The essentials of paper making by hand from rags and raw vegetable fibres, the soaking of fibres in water and boiling them in lyes, the beating, rolling, smoothing, sizing and polishing of the paper, were then known and practised. But the best paper was then a dear commodity. The art of bleaching coloured stock was unknown, and white paper was made alone from stock that came white into the mill. The processes were nearly all hand operations. “Beating” was pounding in a mortar. The pulp was laid by hand upon moulds made of parallel strands of coarse brass wire; and the making of the pulp by grinding wood and treating it chemically to soften it was experimental.

The nineteenth century produced a revolution. It introduced the use of modern machinery, and modern chemical processes, by which all known varieties and sizes of paper, of all colours, as well as paper vessels, are made daily in immense quantities in all civilised countries, from all sorts of fibrous materials.

Knight, in his Mechanical Dictionary, gives a list of nearly 400 different materials for paper making that had been used or suggested, for the most part within the century and up to twenty years ago, and the number has since increased.

The modern revolution commenced in 1799, when Louis Robert, an employee of François Didot of Essones, France, invented and patented the first machine for making paper in a long, wide, continuous web. The French government in 1800 granted him a reward of 8,000 francs. The machine was then exhibited in England and there tested with success. It was there that Messrs. Fourdrinier, a wealthy stationery firm, purchased the patents, expended £60,000 for improvements on the machine, and first gave to the world its practical benefits. This expenditure bankrupted them, as the machines were not at once remunerative, and parliament refused to grant them pecuniary assistance. Gamble, Donkin, Koops, the Fourdriniers, Dickenson, and Wilkes, were the first inventors to improve the Robert machine, and to give it that form which in many essential features remains to-day. They, together with later inventors, gave to the world a new system of paper making.

By 1872 two hundred and ninety-nine Fourdrinier machines were running in the United States alone. In the improved Fourdrinier machine or system, rags, or wood, or straw are ground or otherwise reduced to pulp, and then the pulp, when properly soaked and drained, is dumped into a regulating box, passing under a copper gate to regulate the amount and depth of feed, then carried along through strainers, screeners or dressers, to free the mass from clots and reduce it to the proper fineness, over an endless wire apron, spread evenly over this apron by a shaking motion, subjected to the action of a suction box by which the water is drawn off by air-suction pumps, carried between cloth-covered rollers which press and cohere it, carried on to a moving long felt blanket to further free it from moisture, and which continues to hold the sheet of pulp in form; then with the blanket through press rolls adjustable to a desired pressure and provided with means to remove therefrom adhering pulp and to arrest the progress of the paper if necessary; then through another set of compression rollers, when the condensed and matted pulp, now paper, is carried on to a second blanket, passed through a series of steam cylinders, where the web is partially dried, and again compressed, thence through another series of rollers and drying cylinders, which still further dry and stretch it, and now, finally completed, the sheet is wound on a receiving cylinder. The number of rollers and cylinders and the position and the length of the process to fully dry, compact, stretch and finish the sheet, may be, and are, varied greatly. If it is desired to impress on or into the paper water marks, letters, words, or ornamental matter, the paper in its moist stage, after it passes through the suction boxes, is passed under a “dandy” or fancy scrolled roll provided on its surface with the desired design. When it is desired to give it a smooth, glossy surface, the paper, after its completion, is passed through animal sizing material, and then between drying and smoothing rollers. Or this sizing may be applied to the pulp at the outset of the operation. Colouring material, when desired, is applied to the pulp, before pressing. By the use of machines under this system, a vast amount of material, cast-off rags, etc., before regarded as waste, was utilised for paper making.

The modern discoveries of the chemists of the century as to the nature of fibres, best modes and materials for reducing them to pulp, and bleaching processes, have brought the art of paper making from wood and other fibrous materials to its present high and prosperous condition.

What are known as the soda-pulp and the sulphite processes are examples of this. The latter and other acid processes were not successful until cement-lined digesters were invented to withstand their corroding action. But now it is only necessary to have a convenient forest of almost any kind of wood to justify the establishment of a paper mill.