The desert history is thus begun in isolation from the sea from which the cloud moisture is derived, a balance being struck between inflow and evaporation. Yet if deserts have no outlets, it is not true that they have no rivers. These are occasionally permanent, often periodic, but generally ephemeral and violent. The characteristic drainage of deserts comes as the immediate result of sudden cloudburst. As a consequence, the desert stream flows from the mountain wall choked with sediment, and entering the depressed basin, is for the most part either sucked down into the floor or evaporated and returned to the atmosphere. The dissolved material which was carried in the water is eventually left in saline deposits, and the great burden of sediment accumulates in thick stratified masses which in magnitude outstrip the largest deltas in the ocean.
The self-registering gauge of past climates.—From the initiation of the desert in its isolation from the lands tributary to the sea, its history becomes an individual and independent one. An increasing quantity of rainfall will be marked by larger inflow to the basin, and the lakes which form in its lowest depression will, as a consequence, rise and expand over larger areas. A contrary climatic change will bring about a lowering of the lakes and leave behind the marks of former shorelines above the water level ([Fig. 205]). Deserts are thus in a sense self-registering climatic gauges whose records go back far beyond the historic past. From them it is learned that there have been alternating periods of larger and smaller precipitation, which are referred to as pluvial and interpluvial periods.
Fig. 205.—Former shore lines on the mountain wall surrounding the desert of the Great Basin. View from the temple in Salt Lake City (after Gilbert).
From such records it is learned that the Great Basin of the western United States was at one time occupied by two great desert lakes, the one in the eastern portion being known as Lake Bonneville ([Fig. 206]). With the desiccation which followed upon the series of pluvial periods, which in other latitudes resulted in great continental glaciers and has become known as the Glacial Period, this former desert lake dried up to the limits of Great Salt Lake and a few smaller isolated basins. Between 1850 and 1869 the waters of Great Salt Lake were rising, while from 1876 to 1890 their level was falling, though subject to periodic fluctuations, and in recent years the waters of the lake have risen so high as to pass all records since the occupation of the country. As a consequence the so-called Salt Lake “cut-off” of the Union Pacific Railway, constructed at great expense across a shallow portion of the lake, has been overflowed by its waters. The Sawa Lake in the Persian Desert, which disappeared some five hundred years ago, again came into existence in 1888 so as to cover the caravan route to Teheran.
Fig. 206.—Map of the former Lake Bonneville (dotted shores), and the boundaries of the Great Salt Lake of 1869 (smaller area) and that of the present (after Berghaus).
The record in the rocks of the distant past reveals the fact that in some former deserts barriers were, in the course of time, broken down, with the result that an invading sea entered through the breached wall. The result was the sudden destruction of land life, the remains of which are preserved in “bone beds”, now covered by true marine deposits. A still later episode of the history was begun when the sea had disappeared and land animals again roamed above the earlier desert. Such an alternation of marine deposits with the remains of land plants and animals in the deposits of the Paris Basin, led the great Cuvier to his belief that geologic history was comprised of a succession of cataclysms in which life was alternately destroyed and re-created in new forms—a view which later, under the powerful influence of Lyell and Darwin, gave way to that of more gradual changes and the evolution of life forms.
Some characteristics of the desert wastes.—The great stretches of the arid lands have been often compared to the ocean, and the Bedouin’s camel is known as “the ship of the desert.” Though a deceptive resemblance for the most part, the comparison is not without its value. Both are closed basins, and it is in this respect that the desert and the ocean may be said to most resemble each other, for none of the water and none of the sediment is lost to either except as boundaries are, with the progress of time, transposed or destroyed. Flatness of surface and monotony of scenery both have in common, and the waters and the sand are in each case salt; yet the ocean, from the tropics to the poles, has the same salts in essentially the same proportions, while in the desert the widest variations are found both in the salts which are present and in their relative quantities.
Upon the borders of the ocean are found ridges of yellow sand heaped up by the wind, but these ramparts are small in comparison to those which in deserts are found upon the borders ([plate 7 A]).