C. Apparatus to illustrate shearing action within the overturned limb of a fold.
The overthrust fold.—Whenever a stratum is bent, there is a tendency for its particles to be separated upon the convex side of the bend, at the same time that those upon the concave side are crowded closer together—there is tension in the former case and compression in the latter ([Fig. 26]). Within an unsymmetrical or an overturned fold, the peculiar distortions in the different sections of the stratum are less simple and are best illustrated by [pl. 2 C]. This apparatus shows two similar piles of paper sheets, upon the edges of each of which a series of circles has been drawn. When now one of the piles is bent into an unsymmetrical fold, it is seen that through an accommodation by the paper sheets sliding each over its neighbor large distortions of the circles have occurred. In that steeper limb which with closer folding will be overturned the circles have been drawn out into long and narrow ellipses, and this indicates that those rock particles which before the bending were included in the circle have been moved past each other in the manner of the blades of a pair of shears. Such extreme “shearing” action is thus localized in the underturned limb of the fold, and a time must come with continuation of the compression when the fold will rupture at this critical place along a plane parallel to the longest axis of the ellipses or nearly parallel to the axial plane of the anticline. Such structures probably occur in the zone of combined fracture and flow, up into which the beds are forced in cases of close compression. Relief thus being found upon this plane of fracture, the upper portion of the fold will now ride over the lower, and the displacement is described as a thrust or overthrust.
Fig. 26.—A bent stratum to illustrate tension upon the convex and compression upon the concave side (after Van Hise).
In the long series of experiments conducted by Mr. Bailey Willis of the United States Geological Survey, all the stages between the overturned fold and the overthrust fold were reproduced. Where a series of folds was closely compressed, a parallel series of thrusts developed ([pl. 2 B]), so that a series of slices cutting across neighboring strata was slid in succession, each over the other, like the scales upon a fish or the shingles upon a roof. Quite remarkable structures of this kind have been discovered in rocks of such closely folded districts as the Northwest Highlands of Scotland, where the overriding is measured in miles. Near the thrust planes the rocks show a crushing of the grains, and the planes themselves are sometimes corrugated and polished by the movement.
Restoration of mutilated folds.—Since flexuring of the rocks takes place within the zone of flow at a distance of several miles below the earth’s surface, it is quite obvious that the results of the process can be studied only after some thousands of feet of superincumbent strata have been removed. We are a little later to see by what processes this lowering of the surface is accomplished, but for the present it may be sufficient to accept the fact, realizing that before foldings in the strata can reach the surface, they must have passed through the upper zone of fracture.
It might perhaps be supposed that the anticlines would appear as the mountains upon the surface, and occasionally this is true; as, for example, in the folded Jura Mountains of western Europe. More generally, the mountains have a synclinal structure and the valleys an anticlinal one; but as no general rule can be applied, it is necessary to make a restoration of the truncated folds in each district before their character can be known.
The geological map and section.—The earth’s surface is in most regions in large part covered with soil or with other incoherent rock material, so that over considerable areas the hard rocks are hidden from view. Each locality at which the rock is found at the earth’s surface “in place” is described as an outcropping or exposure. In a study of the region each such exposure must be examined to determine the nature of the rock, especially for the purpose of correlation with neighboring exposures, and, in addition, both the probable direction in which it is continued along the surface—the strike—and the inclination of its beds—the dip. If the outcroppings are sufficiently numerous, and rock type, strike and dip, may all be determined, the folds of the district may be restored with almost as much accuracy as though their curves were everywhere exposed to view. A cross section through the surface which represents the observed outcrops with their inclinations and the assumed intermediate strata in their probable attitudes is described as a geological section ([Fig. 27]). A map upon which the data have been entered in their correct locations, either with or without assumptions concerning the covered areas, is known as a geological map.