(d) A new subsidence of the truncated lower series and deposition of the upper series across its eroded surface.

(e) A new elevation of the double series to its present position above sea level.

Fig. 35.—Types of deceptive or erosional unconformities.

From this succession of episodes it is seen that a break of this kind between two series of deposits involves a double oscillation of subsidence followed by elevation—a large depression followed by a large elevation, a smaller subsidence followed by elevation. The time interval which must have been represented by these repeated operations is so vast as at first to stagger the mind in contemplating it. When, as in this instance, the dips of the lower series of beds differ from those of the upper, we have to do with an angular unconformity. It may be, however, that the lower series was not so far depressed as to enter the zone of flow, and that its beds meet those of the upper series with apparent conformity. Such an unconformity is often extremely difficult to recognize, and it is described as a deceptive or erosional unconformity.

With a deceptive unconformity the clew to its real nature is usually some fact which indicates that the lower series of sediments had been raised above the level of the sea before the upper series was deposited upon it. This may be apparent either in the irregularity of the surface on which the two series are joined, in some evidence of the action of waves such as would be furnished by a basal conglomerate in the upper series, or some indication of different resistance of different rocks of the lower series to attacks of the atmosphere upon them ([Figs. 33] and [35 a-c]).

In most cases, at least, the lowest member of the upper series will be a different type of rock from the uppermost member of the lower series, hence the frequent occurrence of the discordant cross bedding in sandstone should not deceive even the novice into the assumption of an unconformity.

Reading References to Chapter V