When, as is quite generally the case, the actual plane of displacement of a fault is not open to inspection, the movement may be proven by the observation of abrupt, as contrasted with gradual, changes in the strikes and dips of neighboring exposures ([Fig. 45]); or by noting that some easily recognized formation has been sharply offset in its outcrops ([Fig. 46]).
Fig. 45.—Map to show how a fault may be indicated in abrupt changes of the strike and dip of neighboring exposures.
Fig. 46.—A series of parallel faults indicated by successive offsets in the course of an easily recognizable rock formation.
There are in addition many indications rather than proofs of the presence of faults, which must be taken account of in every general study of the geology of a district. Thus the outcrops of all neighboring formations may terminate abruptly upon a straight line which intersects all alike. Deep-seated fissure springs may be aligned in a striking manner, and so indicate the course of a prominent fracture, though not necessarily of a fault. Much the same may be said of the dikes of cooled magma which have been injected along preëxisting fractures.
The base of the geological map.—Modern topographic maps form an important part of the library of the serious student of physiography; they are the gazetteer of this branch of science. Every civilized nation has to-day either completed a topographic atlas of its territory, or it is vigorously prosecuting a survey to furnish maps which represent the relief with some detail, and publishing the results in the form of an atlas of quadrangles. Thus a relief map will erelong be obtainable of any part of the civilized world, and may be purchased in separate sections. Nowhere is this work being taken up with greater vigor than in the United States, where a vast domain representing every type of topographic peculiarity is being attacked from many centers. Here and elsewhere the relief of the land is being expressed by so-called contours or lines of equal altitude upon the earth’s surface. It is as though a series of horizontal planes, separated by uniform intervals of 20 or 40 or 100 feet, had been made to intersect the surface, and the intersection curves, after consecutive numeration, had been dropped into a single plane for printing.
Where the slopes are steep, the contour lines in the topographic map will appear crowded together and so produce a deep shade upon the map; whereas with relatively flat surfaces white patches will stand out prominently upon the map. More and more the topographic map is coming into use, and for the student of nature in particular it is important to acquire facility in interpreting the relief from the topographic map. To further this end, a special model has been devised, and its use is described in appendix C. Usually before any satisfactory geological map can be prepared, a contoured topographic map of the district to be studied must be available.
The field map and the areal geological map.—As the atlas of topographic maps is the physiographic gazetteer, so geological maps together constitute the reference dictionary of descriptive geology. Not only are topographic maps of many districts now generally available, but more and more it has become the policy of governments to supply geological maps in the same quadrangle form which is the unit of the topographic map. The geological map is, however, a complex of so many conventional symbols, that without some practical experience in the actual preparation of one, it is exceedingly difficult for the student to comprehend its significance. A modern geological map is usually a rectangular sheet printed in color, upon which are many irregular areas of individual hue joined to each other like the parts of a child’s picture puzzle.
The colored areas upon the geological map are each supposed to indicate where a certain rock type or formation lies immediately below the surface, and this distribution represents the best judgment of the geologist who, after a study of the district, has prepared the map. Unfortunately the conventions in use are such that his observation and his theory have been hopelessly intermingled in the finished product. Armed with the geological map, the student who visits the district finds spread out before him, it may be, a landscape of hill and valley, of green forest and brown farming land, which is as different as may be from the colored puzzle which he holds in his hand. Hidden under the farm vegetation or masked by the woods are scattered outcroppings of rock which have been the basis of the geologist’s judgment in preparing the map. Experience shows that in order to bridge the wide gap between the geology in the landscape and the patches of color upon the map something more than mere examination of the colored sheet is necessary. We shall therefore describe, with the aid of laboratory models, the various stages necessary to the preparation of a geological map, and every student should be advised to follow this by practical study of some small area where rocks are found in outcrop.