An advantage of the first importance is evidently secured if the rods of the pendulum, of which the building is conceived to be composed, have sufficient elasticity to be considerably distorted without rupture and to again recover their original position. This is the supreme advantage of structural steel for all large buildings, which is coupled, however, with the disadvantage that the riveted fastenings are apt to be quickly sheered off under the vibrations. Large and high buildings, when sufficiently elastic, have fortunately the property of destroying the earth waves by interference before they have traveled above the lower stories.

For large structures in which wood cannot be used, strongly reënforced concrete is well adapted, for it has in general the same advantages as steel with somewhat reduced elasticity, but with a more effective binding together of the parts. This requirement of thorough bracing and tying together of the several parts of a building causes it to vibrate, not as many pendulums, but as one body. If met, it removes largely the danger from racking strains, and for small structures particularly it is the requirement which is most easily complied with. For such buildings it is therefore necessary that the framework should be built in a close network with every joint firmly braced and with all parts securely tied together. Especial attention should be given to the fastenings of floor and partition ends. The house shown in [Fig. 85] could not have been subjected to heavy shocks, for though the walls are thrown down, the floors and partitions have been left near their original positions.

Fig. 86.—Building wrecked at San Mateo, California, during the late earthquake. The heavy roof and upper floor, acting as a unit, have battered down the upper walls (after J. C. Branner).

This tendency of the walls, floors, partitions, and roof to act as individual units in the vibration, is one that must be reckoned with and be met by specially effective bracing and tying at the junctions. Otherwise these larger parts of the structure may act like battering rams to throw over the walls or portions of them ([Fig. 86]).

Reading References for Chapters VII and VIII

General works:—

John Milne. Seismology. London, 1898, pp. 320.

C. E. Dutton. Earthquakes in the Light of the New Seismology. Putnam, New York, 1904, pp. 314.