This volcano girdle is by no means a perfect one, for in addition to the principal festoons of the western border there are many secondary ones, and still other arcs are found well toward the center of the oceanic area. Another broad belt of volcanoes borders the Mediterranean Sea, and is extended westward into the Atlantic Ocean. Narrower belts are found in both the northern and southern portions of the Atlantic Ocean, on the margins of the Caribbean Sea, etc. The fact of greatest significance in the distribution seems to be that bands of active volcanoes are to be found wherever mountain ranges are paralleled by deeps on the neighboring ocean floor ([Fig. 90]). As has been already pointed out in the chapter upon earthquakes, it is just such places as these which are the seat of earthquakes; these are zones of the earth’s crust which are undergoing the most rapid changes of level at the present time. Thus the rise of the land in mountains is proceeding simultaneously with the sinking of the sea floor to form the neighboring deeps.

Fig. 91.—Volcanic cones formed in 1783 above the Skaptár fissure in Iceland (after Helland).

Fig. 92.—Diagrams to illustrate the location of volcanic vents upon fissure lines, a, openings caused by lateral movement of fissure walls; b, openings formed at fissure intersections.

Arrangement of volcanic vents along fissures and especially at their intersections.—Within those districts in which volcanoes are widely separated from their neighbors, the law of their arrangement is difficult to decipher, but the view that volcanic vents are aligned over fissures is now supported by so much evidence that illustrations may be supplied from many regions. An exceptionally perfect line of small cones is found along the Skaptár cleft in Iceland, upon which stands the large volcano of Laki. This fissure reopened in 1783, and great volumes of lava were exuded. Over the cleft there was left a long line of volcanic cones ([Fig. 91]). There are in Iceland two dominating series of parallel fissures of the same character which take their directions respectively northeast-southwest and north-south. Many such fissures are traceable at the surface as deep and nearly straight clefts or gjás, usually a few yards in width, but extending for many miles. The Eldgjá has a length of more than 18 English miles and a depth varying from 400 to 600 feet. On some of these fissures no lava has risen to the surface, whereas others have at numerous points exuded molten rock. Sometimes one end only of a fissure, the more widely gaping portion, has supplied the conduits for the molten lava. This is well illustrated by the cratered monticules raised by the common ant over the cracks which separate the blocks of cement sidewalk, the hillocks being located where the most favorable channel was found for the elevation of the materials.

Fig. 93.—Outline map of the eastern portion of the island of Java, displaying the arrangement of volcanic vents in alignment upon fissures with the larger mountains at fissure intersections (after Verbeek).

Those places upon fissures which become lava conduits appear to be the ones where the cleft gapes widest so as to furnish the widest channel. Wherever a differential lateral movement of the walls has occurred, openings will be found in the neighborhood of each minor variation from a straight line ([Fig. 92 a]). Wherever there are two or more series of fissures, and this would appear to be the normal condition, places favorable for lava conduits occur at fissure intersections. Within such veritable volcano gardens as are to be found in Malaysia, the law of volcano distribution became apparent so soon as accurate maps had been prepared. Thus the outline map of a portion of the island of Java ([Fig. 93]) shows us that while the volcanoes of the island present at first sight a more or less irregular band or zone, there are a number of fissures intersecting in a network, and that the volcanoes are aligned upon the fissures with the larger cones located at the intersections. So also in Iceland, the great eruption of Askja in 1875 occurred at the intersection of two lines of fissure.

Outside these closely packed volcanic regions, similar though less marked networks are indicated; as, for example, in and near the Gulf of Guinea. If now, instead of reducing the scale of our volcano maps, we increase it, the same law of distribution is no less clearly brought out. The monticules or small volcanic cones which form upon the flanks of larger volcanic mountains are likewise built up over fissures which on numerous occasions have been observed to open and the cones to form upon them.