Fig. 96.—Lava plains about the Snake River in Idaho.
Though the greater effusions of lava have occurred in prehistoric times, and the manner of extrusion has necessarily been largely inferred from the immense volume of the exuded materials and the existence of basaltic dikes in neighboring regions, yet in Iceland we are able to observe the connection between the dikes and the lava outflows. Professor Thoroddsen has stated that in the great basaltic plateau of Iceland, lava has welled out quietly from the whole length of fissures and often on both sides without giving rise to the formation of cones. At three wider portions of the great Eld cleft, lava welled out quietly without the formation of cones, though here in the southern prolongation of the fissure, where it was narrower, a row of low slag cones appeared. Where the lava outwellings occurred, an area of 270 square miles was flooded.
Fig. 97.—Characteristic profiles of lava volcanoes. 1, basaltic lava mountain; 2, mountain of siliceous lava (after Judd).
The composition and the properties of lava.—In our study of igneous rocks (Chapter IV) it was learned that they are composed for the most part of silicate minerals, and that in their chemical composition they represent various proportions of silica, alumina, iron, magnesia, lime, potash, and soda. The more abundant of these constituents is silica, which varies from 35 to 70 per cent of the whole. Whenever the content of silica is relatively low,—basic or basaltic lava,—the cooled rock is dark in color and relatively heavy. It melts at a relatively low temperature, and is in consequence relatively fluid at the temperatures which lavas usually have on reaching the earth’s surface. Furthermore, from being more fluid, the water which is nearly always present in large quantity within the lava more readily makes its escape upon reaching the surface. Eruptions of such lava are for this reason without the violent aspects which belong to extrusions of more siliceous (more “acidic”) lavas. For the same reason, also, basaltic lava flows more freely and can spread much farther before it has cooled sufficiently to consolidate. This is equivalent to saying that its surface will assume a flatter angle of slope, which in the case of basaltic lava seldom exceeds ten degrees and may be less than one degree ([Fig. 97]).
Fig. 98.—A driblet cone (after J. D. Dana).
Siliceous lavas, on the other hand, are, when consolidated, relatively light both in color and weight and melt at relatively high temperatures. They are, therefore, usually but partly fused and of a viscous consistency when they arrive at the earth’s surface. Because of this viscosity they offer much resistance to the liberation of the contained water, which therefore is released only to the accompaniment of more or less violent explosions. The lava is blown into the air and usually falls as consolidated fragments of various degrees of coarseness.