The larger the machine the more difficult it will be to control its movements in the air, and yet enlargement is absolutely necessary as weight, in the form of motor, rudder, etc., is added.

Air currents near the surface of the ground are diverted by every obstruction unless the wind is blowing hard enough to remove the obstruction entirely. Take, for instance, the case of a tree or shrub, in a moderate wind of from ten to twelve miles an hour. As the wind strikes the tree it divides, part going to one side and part going to the other, while still another part is directed upward and goes over the top of the obstruction. This makes the handling of a glider on an obstructed field difficult and uncertain. To handle a glider successfully the place of operation should be clear and the wind moderate and steady. If it is gusty postpone your flight. In this connection it will be well to understand the velocity of the wind, and what it means as shown in the following table:

Miles per hour Feet per second Pressure per sq. foot
10 14.7 .492
25 36.7 3.075
50 73.3 12.300
100 146.6 49.200

Pressure of wind increases in proportion to the square of the velocity. Thus wind at 10 miles an hour has four times the pressure of wind at 5 miles an hour. The greater this pressure the large and heavier the object which can be raised. Any boy who has had experience in flying kites can testify to this, High winds, however, are almost invariably gusty and uncertain as to direction, and this makes them dangerous for aviators. It is also a self-evident fact that, beyond a certain stage, the harder the wind blows the more difficult it is to make headway against it.

Launching Device for Gliders.

On page 195 will be found a diagram of the various parts of a launcher for gliders, designed and patented by Mr. Octave Chanute. In describing this invention in Aeronautics, Mr. Chanute says:

"In practicing, the track, preferably portable, is generally laid in the direction of the existing wind and the car, preferably a light platform-car, is placed on the track. The truck carrying the winding-drum and its motor is placed to windward a suitable distance—say from two hundred to one thousand feet—and is firmly blocked or anchored in line with the portable track, which is preferably 80 or 100 feet in length. The flying or gliding machine to be launched with its operator is placed on the platform-car at the leeward end of the portable track. The line, which is preferably a flexible combination wire-and-cord cable, is stretched between the winding-drum on the track and detachably secured to the flying or gliding machine, preferably by means of a trip-hoop, or else held in the hand of the operator, so that the operator may readily detach the same from the flying-machine when the desired height is attained."

How Glider Is Started.

"Then upon a signal given by the operator the engineer at the motor puts it into operation, gradually increasing the speed until the line is wound upon the drum at a maximum speed of, say, thirty miles an hour. The operator of the flying-machine, whether he stands upright and carries it on his shoulders, or whether he sits or lies down prone upon it, adjusts the aeroplane or carrying surfaces so that the wind shall strike them on the top and press downward instead of upward until the platform-car under action of the winding-drum and line attains the required speed.

"When the operator judges that his speed is sufficient, and this depends upon the velocity of the wind as well as that of the car moving against the wind, he quickly causes the front of the flying-machine to tip upward, so that the relative wind striking on the under side of the planes or carrying surfaces shall lift the flying machine into the air. It then ascends like a kite to such height as may be desired by the operator, who then trips the hook and releases the line from the machine."