While operating on the same general principle, aerial propellers are much larger than those used on boats. This is because the boat propeller has a denser, more substantial medium to work in (water), and consequently can get a better "hold," and produce more propulsive force than one of the same size revolving in the air. This necessitates the aerial propellers being much larger than those employed for marine purposes. Up to this point all aviators agree, but as to the best form most of them differ.

Kinds of Propellers Used.

One of the most simple is that used by Curtiss. It consists of two pear-shaped blades of laminated wood, each blade being 5 inches wide at its extreme point, tapering slightly to the shaft connection. These blades are joined at the engine shaft, in a direct line. The propeller has a pitch of 5 feet, and weighs, complete, less than 10 pounds. The length from end to end of the two blades is 6 1/2 feet.

Wright uses two wooden propellers, in the rear of his biplane, revolving in opposite directions. Each propeller is two-bladed.

Bleriot also uses a two-blade wooden propeller, but it is placed in front of his machine. The blades are each about 3 1/2 feet long and have an acute "twist."

Santos-Dumont uses a two-blade wooden propeller, strikingly similar to the Bleriot.

On the Antoinette monoplane, with which good records have been made, the propeller consists of two spoon-shaped pieces of metal, joined at the engine shaft in front, and with the concave surfaces facing the machine.

The propeller on the Voisin biplane is also of metal, consisting of two aluminum blades connected by a forged steel arm.

Maximum thrust, or stress—exercise of the greatest air-displacing force—is the object sought. This, according to experts, is best obtained with a large propeller diameter and reasonably low speed. The diameter is the distance from end to end of the blades, which on the largest propellers ranges from 6 to 8 feet. The larger the blade surface the greater will be the volume of air displaced, and, following this, the greater will be the impulse which forces the aeroplane ahead. In all centrifugal motion there is more or less tendency to disintegration in the form of "flying off" from the center, and the larger the revolving object is the stronger is this tendency. This is illustrated in the many instances in which big grindstones and fly-wheels have burst from being revolved too fast. To have a propeller break apart in the air would jeopardize the life of the aviator, and to guard against this it has been found best to make its revolving action comparatively slow. Besides this the slow motion (it is only comparatively slow) gives the atmosphere a chance to refill the area disturbed by one propeller blade, and thus have a new surface for the next blade to act upon.

Placing of the Motor.