Fig. 9.—Structure section showing the profile of the mountains and relations of rocks below the surface near Livingston, Montana. The strata were crowded together until they bent into great sharply defined folds at the time of the Rocky Mountain Revolution several million years ago. Then the rocks broke along the fault fracture and the mass on the right was shoved over upon the mass on the left. (After U. S. Geological Survey.)
We shall now turn to a consideration of sudden earth movements and some of their effects, including earthquakes. Mention has already been made of the fact that, when pressures and strains are set up in the outer portion (“zone of fracture”) of the earth’s crust, the rocks yield mainly by breaking or fracturing because the rocks not being under a great load of overlying material are there brittle. The earth’s crust has been fractured on small and large scales in many places during the long space of geologic time. Where one block of earth’s crust has slipped or moved past another along a fracture we have what is called a “fault.” Such displacements of rock masses vary in amount from less than an inch to some miles, and they constitute one of the most important features of the architecture of the outer portion of the earth. There are two types of faults fundamentally different as to cause. In one type (so-called “normal fault”) the rocks suddenly yield to a force of tension; a fracture develops and the earth block on one side of the fracture or fault drops with reference to that on the other. In the other type (so-called “thrust faults”) the rocks yield suddenly to a force of compression or lateral thrust, and one block of earth is pushed or thrust partly over another along the surface of fracture or fault. (See [Plate 8.])
Faults range in length up to hundreds of miles, those from one to twenty miles in length being very common. Where an earth block has been displaced thousands of feet along a fault surface, it is not to be understood that the whole displacement resulted from a single movement, but rather from a series of sudden movements separated by greater or less intervals of time. Each sudden movement along a fault surface produces a vibration of the earth near by. Many such sudden movements are known to have caused violent earthquakes. Displacements of twenty to fifty feet, as a result of single movements, are definitely known to have taken place in various regions during the last fifty years; and rarely, if ever, has any sudden displacement of as much as several hundred feet occurred. Cliffs and steep slopes very commonly result from faulting, but, because of the long lapse of time required for the repeated movements in the case of great faults, the cliffs or steep slopes begin to wear back and become more or less subdued long before the last of the movements take place. In regions where movements along great faults have long since ceased, the original steep slopes may be completely obliterated by erosion.
Fig. 10.—Vertical sections through strata illustrating common kinds of faults: a, “normal faults” where one mass simply sinks below another; b, a “thrust fault” where one mass is shoved over another. (After U. S. Geological Survey.)
How does the geologist determine the actual amount of displacement, especially in the case of a large fault in stratified rocks? First, the various formations of the region, where unaffected by faulting, are carefully studied, especially in regard to the character and thickness of each, and their relative geologic ages or normal order as they were deposited one layer above the other. Then, in the simple case of a normal-fault surface at right angles to horizontal strata, it is only necessary to find out what two formations or parts of formations come together along the fault fracture, and the actual amount of displacement is readily determined. Where strata and normal fault surfaces lie at various angles, and also in thrust faults, those angles must be determined in addition to the data above named. In many mining regions, where valuable deposits are affected by faulting, accurate knowledge of the direction and amount of displacements of faults is of great economic importance.
A few examples of normal faults from well-known districts will now be briefly described. The whole eastern front of the central and southern Sierra Nevada Range of California is a great, steep fault slope, from a few thousand to ten thousand or more feet high and hundreds of miles long, of such recent geologic age that it has been only moderately affected by erosion. In fact, it is well known that the southern two-thirds of the range is a great tilted fault block, the total displacement having resulted from repeated sudden movements since about the middle of the present geologic era. A great fault also extends along the eastern base of the great Wasatch Range of Utah and the steep slope thousands of feet high is a fault scarp only slightly modified by erosion. Renewed movements along this profound fault have very recently taken place as proved by the presence of fresh fault scarps in loose deposits which have accumulated across the mouths of some of the canyons, as, for example, near Ogden. In fact, practically all of the north-south ranges of the Great Basin from Utah to California are essentially a series of tilted fault blocks. Another great fault, less conspicuous from the topographic standpoint, is hundreds of miles long in the Coast Range Mountains of California. At the time of the San Francisco earthquake of 1906 there was a renewed sudden movement along this great fracture. The eastern one-half of the Adirondack Mountains of New York is literally a mosaic of hundreds of fault blocks. Many of these faults are from two to thirty miles long and they commonly show displacements of from a few hundred to 2,000 or more feet. A glance at the geological map (in colors) of the vicinity of the great copper mines at Bisbee, Arizona, shows most of that region to contain a network of normal faults which separate it into a mosaic of fault blocks. In each of the examples of faults just given a block of earth has sunk relative to the other, or in other words, each is a “normal fault.”