Running our eyes up and down the lines makes them converge and diverge just as they would were they running up and down some single line whose top was nearer to us than its bottom. Now, if the inclination of the lines be moderate, we may not see them double at all, but single throughout their length, when we look at the dots. Under these conditions their top does look nearer than their bottom—in other words, we see them stereoscopically; and we see them so even when our eyes are rigorously motionless. In other words, the slight disparity in the bottom-ends which would draw the foveæ divergently apart makes us see those ends farther, the slight disparity in the top ends which would draw them convergently together makes us see these ends nearer, than the point at which we look. The disparities, in short, affect our perception as the actual movements would.[12]

The Perception of Distance.—When we look about us at things, our eyes are incessantly moving, converging, diverging, accommodating, relaxing, and sweeping over the field. The field appears extended in three dimensions, with some of its parts more distant and some more near.

"With one eye our perception of distance is very imperfect, as illustrated by the common trick of holding a ring suspended by a string in front of a person's face, and telling him to shut one eye and pass a rod from one side through the ring. If a penholder be held erect before one eye, while the other is closed, and an attempt be made to touch it with a finger moved across towards it, an error will nearly always be made. In such cases we get the only clue from the amount of effort needed to 'accommodate' the eye to see the object distinctly. When we use both eyes our perception of distance is much better; when we look at an object with two eyes the visual axes are converged on it, and the nearer the object the greater the convergence. We have a pretty accurate knowledge of the degree of muscular effort required to converge the eyes on all tolerably near points. When objects are farther off, their apparent size, and the modifications their retinal images experience by aërial perspective, come in to help. The relative distance of objects is easiest determined by moving the eyes; all stationary objects then appear displaced in the opposite direction (as for example when we look out of the window of a railway car) and those nearest most rapidly; from the different apparent rates of movement we can tell which are farther and which nearer."[13]

Subjectively considered, distance is an altogether peculiar content of consciousness. Convergence, accommodation, binocular disparity, size, degree of brightness, parallax, etc., all give us special feelings which are signs of the distance feeling, but not it. They simply suggest it to us. The best way to get it strongly is to go upon some hill-top and invert one's head. The horizon then looks very distant, and draws near as the head erects itself again.

The Perception of Size.—"The dimensions of the retinal image determine primarily the sensations on which conclusions as to size are based; and the larger the visual angle the larger the retinal image: since the visual angle depends on the distance of an object, the correct perception of size depends largely upon a correct perception of distance; having formed a judgment, conscious or unconscious, as to that, we conclude as to size from the extent of the retinal region affected. Most people have been surprised now and then to find that what appeared a large bird in the clouds was only a small insect close to the eye; the large apparent size being due to the previous incorrect judgment as to the distance of the object. The presence of an object of tolerably well-known height, as a man, also assists in forming conceptions (by comparison) as to size; artists for this purpose frequently introduce human figures to assist in giving an idea of the size of other objects represented."[14]

Sensations of Color.—The system of colors is a very complex thing. If one take any color, say green, one can pass away from it in more than one direction, through a series of greens more and more yellowish, let us say, towards yellow, or through another series more and more bluish towards blue. The result would be that if we seek to plot out on paper the various distinguishable tints, the arrangement cannot be that of a line, but has to cover a surface. With the tints arranged on a surface we can pass from any one of them to any other by various lines of gradually changing intermediaries. Such an arrangement is represented in [Fig. 15.] It is a merely classificatory diagram based on degrees of difference simply felt, and has no physical significance. Black is a color, but does not figure on the plane of the diagram. We cannot place it anywhere alongside of the other colors because we need both to represent the straight gradation from untinted white to black, and that from each pure color towards black as well as towards white. The best way is to put black into the third dimension, beneath the paper, e.g., as is shown perspectively in [Fig. 16], then all the transitions can be schematically shown. One can pass straight from black to white, or one can pass round by way of olive, green, and pale green; or one can change from dark blue to yellow through green, or by way of sky-blue, white and straw color; etc., etc. In any case the changes are continuous; and the color system thus forms what Wundt calls a tri-dimensional continuum.

Color-mixture.—Physiologically considered, the colors have this peculiarity, that many pairs of them, when they impress the retina together, produce the sensation of white. The colors which do this are called complementaries. Such are spectral red and green-blue, spectral yellow and indigo-blue. Green and purple, again, are complementaries. All the spectral colors added together also make white light, such as we daily experience in the sunshine. Furthermore, both homogeneous ether-waves and heterogeneous ones may make us feel the same color, when they fall on our retina. Thus yellow, which is a simple spectral color, is also felt when green light is added to red; blue is felt when violet and green lights are mixed. Purple, which is not a spectral color at all, results when the waves either of red and of violet or those of blue and of orange are superposed.[15]