While, however, we admit to the full the great services of this mighty advocate in making an "Inductive" method popular, we should not forget that he had pioneers even in hortatory leadership. His happiest watchword, the Interpretation of Nature, as distinguished from the Interpretation of Authoritative Books, was not of his invention. If we read Whewell's History of the Inductive Sciences, we shall find that many before him had aspired to "give a new turn to the labors of the inquisitive," and in particular to substitute inquisition for disquisition.

One might compile from Whewell a long catalogue of eminent men before Bacon who held that the study of Nature was the proper work of the inquisitive: Leonardo da Vinci (1452-1519), one of the wonders of mankind for versatility, a miracle of excellence in many things, painter, sculptor, engineer, architect, astronomer, and physicist; Copernicus (1473-1543), the author of the Heliocentric theory; Telesius (1508-1588), a theoretical reformer, whose De Rerum Natura (1565) anticipated not a little of the Novum Organum; Cesalpinus (1520-1603), the Botanist; Gilbert (1540-1603), the investigator of Magnetism. By all these men experiment and observation were advocated as the only way of really increasing knowledge. They all derided mere book-learning. The conception of the world of sense as the original MS. of which systems of philosophy are but copies, was a familiar image with them. So also was Bacon's epigrammatic retort to those who wish to rest on the wisdom of the ancients, that antiquity is the youth of the world and that we are the true ancients. "We are older," said Giordano Bruno, "and have lived longer than our predecessors."

This last argument, indeed, is much older than the sixteenth century. It was used by the Doctor Mirabilis of the thirteenth, the Franciscan Friar, Roger Bacon (1214-1292). "The later men are, the more enlightened they are; and wise men now are ignorant of much the world will some day know." The truth is that if you are in search of a Father for Inductive Philosophy, the mediæval friar has better claims than his more illustrious namesake. His enthusiasm for the advancement of learning was not less nobly ambitious and far-reaching, and he was himself an ardent experimenter and inventor. His Opus Majus—an eloquent outline of his projects for a new learning, addressed in 1265 to Pope Clement IV., through whom he offered to give to the Church the empire of the world as Aristotle had given it to Alexander—was almost incredibly bold, comprehensive and sagacious. Fixing upon Authority, Custom, Popular Opinion, and the Pride of Supposed Knowledge, as the four causes of human ignorance, he urged a direct critical study of the Scriptures, and after an acute illustration of the usefulness of Grammar and Mathematics (widely interpreted), concluded with Experimental Science as the great source of human knowledge. I have already quoted (p. 15) the Friar's distinction between the two modes of Knowing, Argument and Experience, wherein he laid down that it is only experience that makes us feel certain. It were better, he cried in his impatience, to burn Aristotle and make a fresh start than to accept his conclusions without inquiry.

Experimental Science, the sole mistress of Speculative Science, has three great Prerogatives among other parts of Knowledge. First, she tests by experiment the noblest conclusions of all other sciences. Next, she discovers respecting the notions which other sciences deal with, magnificent truths to which these sciences can by no means attain. Her third dignity is that she by her own power and without respect to other sciences investigates the secret of Nature.

So far, then, as Exhortation goes, King James's great lawyer and statesman was not in advance of Pope Clement's friar. Their first principle was the same. It is only by facts that theories can be tested. Man must not impose his own preconceptions (anticipationes mentis) on nature. Man is only the interpreter of nature. Both were also at one in holding that the secrets of nature could not be discovered by discussion, but only by observation and experiment.

Francis Bacon, however, went beyond all his predecessors in furnishing an elaborate Method for the interpretation of Nature. When he protested against the intellect's being left to itself (intellectus sibi permissus), he meant more than speculation left unchecked by study of the facts. He meant also that the interpreter must have a method. As man, he says, cannot move rocks by the mere strength of his hands without instruments, so he cannot penetrate to the secrets of Nature by mere strength of his intellect without instruments. These instruments he undertakes to provide in his Inductive Method or Novum Organum. And it is important to understand precisely what his methods were, because it is on the ground of them that he is called the founder of Inductive Philosophy, and because this has created a misapprehension of the methods actually followed by men of science.

Ingenious, penetrating, wide-ranging, happy in nomenclature, the Novum Organum is a wonderful monument of the author's subtle wit and restless energy; but, beyond giving a general impulse to testing speculative fancies by close comparison with facts, it did nothing for science. His method—with its Tables of Preliminary Muster for the Intellect (tabulæ comparentiæ primæ instantiarum ad intellectum, facts collected and methodically arranged for the intellect to work upon); its Elimination upon first inspection of obviously accidental concomitants (Rejectio sive Exclusiva naturarum); its Provisional Hypothesis (Vindemiatio Prima sive Interpretatio Inchoata); its advance to a true Induction or final Interpretation by examination of special instances (he enumerates twenty-seven, 3 × 3 × 3, Prerogativas Instantiarum, trying to show the special value of each for the inquirer)[2]—was beautifully regular and imposing, but it was only a vain show of a method. It was rendered so chiefly by the end or aim that Bacon proposed for the inquirer. In this he was not in advance of his age; on the contrary, he was probably behind Roger Bacon, and certainly far behind such patient and concentrated thinkers as Copernicus, Gilbert, and Galileo—no discredit to the grandeur of his intellect when we remember that science was only his recreation, the indulgence of his leisure from Law and State.

In effect, his method came to this. Collect as many instances as you can of the effect to be investigated, and the absence of it where you would expect it, arrange them methodically, then put aside guesses at the cause which are obviously unsuitable, then draw up a probably explanation, then proceed to make this exact by further comparison with instances. It is when we consider what he directed the inquirer to search for that we see why so orderly a method was little likely to be fruitful.

He starts from the principle that the ultimate object of all knowledge is use, practice (scimus ut operemur). We want to know how Nature produces things that we may produce them for ourselves, if we can. The inquirer's first aim, therefore, should be to find out how the qualities of bodies are produced, to discover the formæ or formal causes of each quality. An example shows what he meant by this. Gold is a crowd or conjugation of various qualities or "natures"; it is yellow, it has a certain weight, it is malleable or ductile to a certain degree, it is not volatile (loses nothing under fire), it can be melted, it is soluble. If we knew the forma or formal cause of each of those qualities, we could make gold, provided the causes were within our control. The first object, then, of the investigator of Nature is to discover such formæ, in order to be able to effect the transformation of bodies. It may be desirable also to know the latens processus, any steps not apparent to the senses by which a body grows from its first germs or rudiments, and the schematismus or ultimate inner constitution of the body. But the discovery of the formæ of the constituent qualities (naturæ singulæ), heat, colour, density or rarity, sweetness, saltness, and so forth, is the grand object of the Interpreter of Nature; and it is for this that Bacon prescribed his method.